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(Affiliations continued on next page)
SUMMARY
Posterior fossa group A (PFA) ependymoma is a lethal brain cancer diagnosed in infants and young children.
The lack of driver events in the PFA linear genome led us to search its 3D genome for characteristic features.
Here, we reconstructed 3D genomes from diverse childhood tumor types and uncovered a global topology in
PFA that is highly reminiscent of stem and progenitor cells in a variety of human tissues. A remarkable feature
exclusively present in PFA are type B ultra long-range interactions in PFAs (TULIPs), regions separated by
great distances along the linear genome that interact with each other in the 3D nuclear space with surprising
strength. TULIPs occur in all PFA samples and recur at predictable genomic coordinates, and their formation
is induced by expression of EZHIP. The universality of TULIPs across PFA samples suggests a conservation
of molecular principles that could be exploited therapeutically.
INTRODUCTION

Ependymomas (EPNs) are heterogeneous tumors of the central

nervous system (CNS) that may occur at multiple anatomical

sites, including the supratentorial (STE) and posterior fossa

(PF) regions of the brain, and along the spinal cord with site-spe-
Cell 187, 1–20, Septem
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cific molecular profiles (reviewed in Saleh et al.1). Twomajor mo-

lecular subgroups of PF EPN have been defined based on DNA

methylation profiles: (a) PF group A (PFA), characterized by the

CpG island methylator phenotype (CIMP) and (b) PFB, which

lacks the CIMP profile.2 PFA and PFB EPN are associated with

distinct biological and clinical parameters. For instance, PFAs
ber 5, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
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are mostly diagnosed in infants and young children, whereas

PFBs occur mostly in adults. In addition to being CIMP+, PFA tu-

mors display depletion of the histone mark H3K27me3, which is

deposited by the Polycomb repressive complex 2 (PRC2) and is

usually associated with transcriptional repression.3 Assessment

of H3K27me3 depletion by immunohistochemistry is used as a

clinical test to support the diagnosis of PFAs.4 There are at least

two established mechanisms for depletion of H3K27me3 in this

tumor type. First, 95% of PFAs overexpress EZHIP/CXorf67,5 a

protein that can interact and inhibit EZH2, the catalytic sub-

unit of PRC2.6 Second, some rare PFAs harbor mutations in

the histone 3 variant H3.3 that result in the substitution of lysine

to methionine at position 27 (K27M).7,8 H3.3K27M has been

defined as an oncohistone in pediatric high-grade gliomas

(HGGs) and interacts with PRC2 to block the spread of

H3K27me3.9–11

PFA tumors lack recurrent genetic coding mutations. EZHIP is

one of the most frequently mutated genes, although it is mutated

in only�10% of cases.12 The vast majority of PFAs are therefore

without clear genetic drivers with malignant transformation po-

tential. The low frequency of recurrent coding mutations is

consistent with the extremely low mutation burden in this tumor

type and has slowed the development of accurate genetic

mouse models and targeted therapies.2 Consequently, PFA

patients are usually treated with radiation—which causes sig-

nificant developmental sequelae—and no chemotherapy has

so far shown sufficient efficacy in clinical trials to warrant

standard of care status.1 PFA EPN is therefore a tumor entity

defined by aberrant epigenetic landscapes (CIMP+, depletion

of H3K27me3), while being genetically bland and lacking recur-

rent coding mutations.

The epigenomic profile of a cell is associated with the char-

acteristic architecture of its three-dimensional (3D) genome.
2 Cell 187, 1–20, September 5, 2024
Seminal work with Hi-C13,14 established that the genome is

organized along a hierarchy of structures—loops, domains,

and compartments—that acquire specific configurations in

the 3D nucleus.15 Loops between non-contiguous genomic re-

gions are visualized at the finer resolution of Hi-C experiments.

Loops arise from an extrusion mechanism mediated by the co-

hesin complex and are frequently but not necessarily anchored

by CCCTC-binding factor (CTCF) bound to DNA recognition

motifs arranged in convergent orientations along the linear

genome.16 Loops can bring cis-regulatory elements in prox-

imity with their target genes and are often co-opted to regulate

transcriptional levels. Domains, often referred to as topologi-

cally associating domains or TADs, are the second major level

of organization of the 3D genome and represent strong interac-

tions among contiguous genomic regions. TADs are often de-

limited by loop anchors to form loop domains, which can be

mediated by dimerization of CTCF. The third level of 3D

genome organization is represented by compartments, which

can be of two major types: A and B.15 Type A compartments

correspond to genomic regions with open chromatin, active

transcription, and more central location within the nucleus.

Type B compartments correspond to genomic regions with

closed chromatin and repressed or low transcription and tend

to be located at the nuclear periphery.17 Loops, domains, and

compartments are 3D genome elements that can ultimately

contribute to cell-type-specific transcriptional profiles. Disrup-

tion of domains and compartment boundary elements may

cause developmental disorders18 or contribute to oncogenic

programs.19–21 Instances of boundary disruption have been re-

ported in brain cancers. They can be caused by loss of CTCF

occupancy at domain boundaries, as reported in IDH1-mutant

gliomas,22 or genetic structural variants spanning boundary el-

ements, as observed in medulloblastoma (MB).23 However,
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studies in brain cancers have mostly relied on targeted chro-

mosome conformation capture approaches to test for disrup-

tion of topological domain boundaries. Global approaches

that use Hi-C to profile 3D genome architecture have mostly

been applied to cell lines or patient-derived cultures.24 There

is currently a dearth of information on the 3D genome of

most brain cancers.

In the present study, we have used Hi-C to identify and char-

acterize 3D genome structures that distinguish PFAs from other

pathologically and molecularly distinct childhood CNS tumor

types and non-neoplastic specimens.

RESULTS

A 3D genome topology atlas of childhood CNS
malignancies
We mapped 3D genome topology in childhood CNS tumors us-

ing in situ Hi-C. We generated Hi-C libraries for 61 tumor sam-

ples and 3 non-malignant brain tissues (Figure 1A). In addition,

we reanalyzed 6 previously published Hi-C libraries generated

from the developing human brain.25 For patient and sample in-

formation, see Table S1. The tumor samples included 51

neoplastic or non-neoplastic tissues and 13 patient-derived pri-

mary cultures. Our collection captured distinct CNS tumor

types and their main molecular subgroups, including 34 EPNs

representing PFA (n = 23), PFB (n = 3), STE (n = 5), and spinal

(n = 3) subgroups. We also profiled 15 pediatric HGGs—

including histone 3 wild type (WT; n = 4) and histone 3 mutant

(n = 11) samples—and 6 MBs representing group 3 (G3; n = 2),

group 4 (G4; n = 2), and sonic hedgehog (SHH; n = 2) sub-

groups. In addition, we generated Hi-C libraries from 9 other tu-

mors, including pilocytic astrocytoma (PA; n = 3). In total, we

generated 44 billion reads across all Hi-C libraries, producing

27 billion valid Hi-C contacts. The median resolution of our

Hi-C libraries was 6.4 kbp (range: 2.6–87 kbp). To ensure con-

sistency in our downstream analysis, all Hi-C libraries included

in our study had contact resolutions <15 kilobases (kb) and at

least 90% of all their unique sequencing read pairs resulted

in intra-chromosomal contacts separated by >20 kb. For full

quality control data, refer to Table S1. The high resolution of

our Hi-C maps enabled the analysis of compartments, do-

mains, and loops.

To enable downstream association between 3D genome fea-

tures and transcription, we generated 52 RNA sequencing

(RNA-seq) datasets, 48 of which were paired to Hi-C data in

our collection (Figure 1A; Table S1). Overall, our Hi-C and tran-

scriptomic datasets provide an opportunity for integrative

studies of a large collection of pediatric CNS tumors.
Figure 1. 3D genome features segregate pediatric brain tumors by sub

(A) Metadata summary of samples profiled by Hi-C and RNA-seq. In total, 61 tum

(B) Example of downstream feature annotation performed on Hi-C contact matric

in C.

(C) Enlarged view of the region in dashed rectangle in B.

(D) Concordance between annotated 3D genome features and the SNF model. C

features was defined as one minus concordance. Rows were clustered based o

(E) UMAP (uniform manifold approximation and projection) projection of SNF affi

See also Figure S1 and Tables S1 and S2.

4 Cell 187, 1–20, September 5, 2024
3D genome topologies distinguish tumor molecular
subtypes
Molecular subgrouping of tumor types has historically been

based on genetic, transcriptional, and/or DNA methylation pro-

files. Here, we asked whether 3D genome topology could group

CNS tumors based on their diagnoses andmolecular subgroups.

To maximize robustness, each 3D topology feature was anno-

tated with multiple computational packages whenever possible.

We applied HiCCUPS,15,26 Mustache,27 and Chromosight28 to

annotate loops; Arrowhead26 and TADpole29 to partition the

genome into domains; RobusTAD30 and Insulation Score to

calculate boundary scores; and eigenvector decomposition to

determine compartments (Figures 1B, 1C, and S1A; Tables S1

and S2). For each feature annotation, as well as the overall

Hi-C contact maps, we constructed a distance matrix between

the samples (see STAR Methods). Similarity network fusion

(SNF)31 was applied to reduce the diverse signals of the many

feature annotations to an integrated singular similarity matrix

that allowed clustering of our samples (Figure S1B). To reduce

the redundancy of multiple software callers identifying the

same feature, we subsequently selected only one caller for

each 3D feature type for input into SNF clustering with the

reduced representation clustering appearing highly similar to

the comprehensive clustering that used multiple callers

(Figures 1D and 1E). Application of different callers resulted in

different cluster homogeneity; therefore, the degree of similarity

between individual callers and the final fused network was as-

sessed (Figures 1D and S1C). Clear segregation between tumor

subgroups could be observed across multiple scales for all

feature types. Importantly, the final fused network identified

threemain clusters of samples: one that included all PFA primary

tumors; one that included non-PFA primary tumors; and one that

represented all patient-derived primary cultures (Figures 1E and

S1B). Overall, 3D genome features as measured by Hi-C can

distinguish PFAs from other distinct molecular subtypes of pedi-

atric CNS tumors.

PFAs globally exhibit weaker loops than other CNS
tumor types and pervasive transcription
Given that our SNF analyses showed that aggregate 3D genome

features distinguish PFAs from other pediatric CNS tumors, we

sought to identify and define the topological features that were

characteristic of this tumor type. First, to probe the polymer

properties of chromosomes, we assessed subgroup-specific

differences in Hi-C contact probability with increasing genomic

separation (Figure 2A). While the rates of monotonic decay

were largely consistent across all samples, PFAs exhibited a

depletion of short-range interactions. The reduction in contact
group

ors and 9 non-tumor samples were analyzed.

es. Inset dashed rectangle on the left indicates the zoomed region represented

oncordance values closer to one suggest higher similarity. Distance between

n the Euclidean distance between rows.

nity between samples.
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probability among PFAs was observed at genomic separations

in the sub-100-kb range (10 kb: p = 1.2E-8; 100 kb: p =

1.4E-5), but not at larger separations (1 megabase [Mb]: p =

0.16; 10 Mb: p = 0.066; Figure 2B), findings that are consistent

with an attenuation of near-cis interactions in the expected size

range of most looping interactions. Next, to determine whether

the reduced contact probability between regions less than 100

kb apart corresponded to reduced looping interactions in PFAs

compared to non-PFA EPNs, we identified chromatin loops

across all EPNs with Mustache27 and subsequently performed

differential loop strength analysis with HiCDC+.32 We found

that 1,420 loops were significantly depleted and 82 loops were

significantly enriched in PFAs compared to non-PFA EPNs (Fig-

ure 2C; Table S3). Loop intensity differences were readily visible

on individual Hi-C contact maps (Figure 2D) and aggregate peak

analysis (APA) (Figure 2E). A global comparison of loop strength

revealed a significantly lower loop strength in PFAs compared to

non-PFA EPNs (Wilcoxon rank-sum test p < 2.2E-16; Figure 2F),

with this difference being independent of loop length (Fig-

ure S2A). PFAs therefore exhibit a strong bias toward weaker

loop strengths as compared to other EPN subgroups.

Next, we determined the characteristics of the loops that were

depleted or enriched in PFA. For both depleted and enriched

loops, there was a strong association with CTCF motifs. 86.9%

of PFA-depleted anchors overlap CTCF motifs, yielding an

odds ratio (OR) of 9.41 (95% confidence interval: 8.37–10.6).

Similarly, 72.6% of PFA-enriched anchors overlap CTCF sites

(OR 3.69, 95% confidence interval: 2.58–5.37) (Figure 2G).

PFA-depleted loops were more strongly associated with

mRNA-producing genes, whereas PFA-enriched loops fell within

intergenic regions more frequently.

To examine the effects of differential loops on transcription,

we performed bulk transcriptome analysis on pediatric tumors,

including 48 samples from our Hi-C cohort (Table S4). We per-

formed differential expression analysis between PFA and non-

PFA EPN samples (Table S4). Surprisingly, only a small subset

of genes associatedwith differential loopswere also differentially

expressed in PFAs (48 of 745 genes; Figure S2B). Differential

loop strength was not a strong predictor of direction of gene

expression.

To test whether the looping patterns we identified in PFA affect

transcription of the non-coding space, we performed de novo

transcriptome assembly with StringTie.33 With this approach,

we identified thousands of intergenic transcripts across all mo-

lecular subtypes of pediatric CNS tumors we profiled (Data S1)

and quantified their abundance (Table S4). At the two extremes,
Figure 2. Short-range looping interactions appear weaker in PFA tumo

(A) Contact probability decay curves comparing PFA to non-PFA tumors.

(B) Differences in contact probability as a function of genomic separation. P valu

(C) Differential interactions identified by HiCDC+ between PFA and non-PFA EPN

(D) Hi-C contact maps comparing loop signals detected from representative exam

signals that are not detected in PFA.

(E) Aggregate peak analysis for representative examples at sites of decreased lo

(F) Global loop strength comparison between PFA and non-PFA EPN for the un

calculated using Wilcoxon rank-sum test.

(G) Enrichment of annotated genome features at differential loop loci.

See also Figure S2, Tables S3 and S4, and Data S1.
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PFAs had the highest number of intergenic transcripts andHGGs

had the lowest (Figure S2C). SomePFA-enriched intergenic tran-

scripts overlapped regions enriched for the activating histone

mark H3K27ac2 and that were identified as super-enhancers

(SEs) using ROSE34,35 (Figure S2D), suggesting that they may

be transcribed enhancer RNAs (eRNAs). However, transcription

in PFA tumors also occurred at intergenic regions that lacked any

inferred SEs or annotated genes (Figure S2D). These results are

consistent with the 3D genome architecture of PFA-enabling

transcription of intergenic regions.

Large contiguous compartments and strong type B
interactions are characteristic of PFA tumors
Hi-C data have revealed that the genome broadly segregates

into type A and type B compartments, which largely correspond

with euchromatin or heterochromatin, respectively.14,15

Compartment organization in PFAs was distinct from all other

sample types included in this study. Regions of contiguous

compartmentalization appear to be larger in PFAs than in non-

malignant tissues (Figure 3A) and other tumor types, including

other EPN molecular subgroups (Figure 3B). Longer compart-

ment blocks appeared as reduced alternation or ‘‘flicker’’ be-

tween compartment types (Figures 3A and 3B). These longer

compartment blocks were quantified by assessing the decay

of the auto-correlation coefficient for compartment scores,36

which gauges the average feature size in the compartment score

signal (Figure 3C). These results demonstrate that PFA samples

(red lines in Figure 3C) have larger compartments than other tu-

mor types (gray lines). To better contextualize these findings, we

reprocessed published Hi-C data spanning a diverse range of

cell types including cultured cell lines, non-neoplastic primary

tissue, and tumor tissues (n = 38, see STAR Methods; Table

S5). Interestingly, we found that stem or progenitor cell types—

including neural progenitor cells and embryonic stem cells—(yel-

low lines in Figure 3C) also tend to have larger compartment

blocks than more differentiated cell types, including astrocytes

of the cerebellum and spinal cord, right temporal lobe, and left

temporal lobe tissues (blue lines in Figure 3C). These character-

istics showcase a 3D genome topology in PFAs that is reminis-

cent of undifferentiated cell states.

We next questioned whether the increased size of compart-

ment blocks in PFA could influence the strength with which these

compartments interact. Saddle plots37 displayed stronger B-B

interactions in PFAs compared to other tumor types (Figure 3D).

This trend was observed for both intra- and inter-chromosomal

B-B interactions (Figure 3D).
rs

es calculated using Wilcoxon rank-sum test.

for the union set of Mustache-called loops.

ples: PFB (E1859), STE (E2051), and PFA (E2074) tumors. Circles highlight loop

op strength in PFA.

ion set of Mustache-called loops, quantified by Chromosight. P values were



Figure 3. Strict segregation of compartments in PFA

(A) Comparison of Pearson correlation matrices between PFA (E2074) and non-tumor left temporal lobe.

(B) Comparison of Pearson correlation matrices between PFA (E2074) and Spinal ependymoma (E2105).

(C) Autocorrelation decay of compartment scores across tumor and developmental cell types.

(D) Saddle plots comparing contact frequency by compartment status across representative samples for each EPN subgroup: STE (E2051), PFA (E809), PFB

(E1859), Spinal (E2061).

(E) Heatmap of Hi-C contacts along a region of chromosome 2. Negative eigen values (blue) identify type B compartments, whereas positive eigen values (yellow)

identify type A compartments. Black rectangles highlight portions of each type B compartment that interact with each other over long distances.

(legend continued on next page)
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Comparison of the strong homotypic interactionswe observed

in PFA samples with published Hi-C data (Table S5) revealed cis

B-B interactions in PFA were significantly stronger than all other

non-EPN cell types (Figure S3A). Our analyses therefore support

the notion that compartment blocks in PFA are larger and more

strictly segregated than in other childhood CNS malignancies,

with cis B-B interactions being particularly strong.

A subset of type B compartments form unusually strong
long-range interactions in PFA tumors
Among the type B interactions we observed in PFA, we identified

a subset that weremuch stronger than others and involved only a

portion of the compartment that was demarcated by the most

negative eigenvalues (black rectangles in Figure 3E). These re-

gions frequently interact with each other despite being sepa-

rated by over 10 Mbp along the linear genome. We define these

long-distance, strong, and sharp interactions between portions

of type B compartments as type B ultra long-range interactions

in PFAs (TULIPs).

To determine whether TULIPs are enriched in PFAs compared

to other tumors and non-tumor cell types, we designed a compu-

tational approach to automate detection of TULIPs based on

Hi-C contact matrices in a quantitative, reproducible, and objec-

tive fashion (Figures S3B–S3I; Table S5; see STAR Methods).

Using thismethod, the number of TULIP calls was strongly corre-

lated with the extreme B-B contact enrichment (Pearson

p < 2.2E-16; Figure 3F), with PFA samples uniformly displaying

high TULIP signal. Clustering of samples based on the Jaccard

distance between TULIP calls sets PFAs clearly apart from the

other tumor subgroups, with only 3 non-PFA samples (two STE

and one PFB) co-clustering with PFAs (Figure 3G). Given that

not all STE and PFB samples displayed TULIPs, future studies

with more PFB and STE samples will be required to determine

the prevalence of TULIPs in these EPN subtypes.

TULIPs represent highly recurrent 3D topological
features in PFA tumors
Pileup analysis of Hi-C contacts between TULIP regions re-

vealed a sharp discontinuity in contact frequency at the bound-

aries, indicating that TULIPs interact strongly with one another to

the exclusion of neighboring genomic DNA (Figure 4A). To further

test whether TULIPs indeed represent a special case of type B

compartment, we measured homotypic interaction strengths

between type A compartments, type B compartments, and

TULIPs in our PFA Hi-C datasets. This analysis showed the ex-

pected wave-like alternations between strong A-A interactions

and B-B interactions along the length of a chromosome (Fig-

ure 4B). However, the interactions between TULIP regions in

PFA were greater than 5-fold higher than between type B

compartment blocks (Figure 4B). These results are consistent

with TULIP regions interacting within a subcompartment of the

nucleus distinct from typical type B regions.
(F) Extreme B-B contact enrichment vs. TULIP calls. Extreme B-B contact enrichm

most negative compartment eigenvalues, excluding inter-chromosomal contac

significance of Pearson correlation. Legend shapes and colors as presented in (

(G) UMAP projection of Jaccard distance between TULIP calls for each sample.

See also Figure S3 and Table S5.
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As Hi-C contact maps are limited to two-dimensional repre-

sentations of chromatin interactions, we aimed to visualize

how TULIPs may impact the organization of the genome in 3D.

We derived 3D models of individual chromosomes from our

Hi-C data using CSynth.38 Using a representative PFA tumor,

our modeling indicates that recurrent TULIPs on the same chro-

mosome tend to cluster close to each other, as can be seen for

chromosome 2 (red regions in Figure 4C). The same regions do

not cluster together in PFB (Figure 4D). With a complementary

approach, we generated 10,000 whole-nucleus diploid 3D

models39 per sample, assuming comparable contact tendencies

across alleles, and confirmed that regions involved in the

formation of TULIPs show greater spatial proximity in PFA than

corresponding regions in non-PFA EPN tumors (Figure S4A).

Quantitatively, mean pairwise distance between TULIP regions

was shorter in PFA tumors than in other EPN tumor types for

both intra- and inter-chromosomal interactions (two-sided Wil-

coxon rank-sum test p < 2E-16 for all comparisons; Figures

S4B and S4C), although this pattern was muchmore remarkable

for intra-chromosomal interactions.

Finally, we directly tested whether TULIPs aggregate within

individual nuclei in PFA clinical specimens. We designed oligo-

FISH (fluorescence in situ hybridization) probes against three

sequential TULIP regions along chromosome 8, and two type

A regions interdigitated between the three TULIP regions (Fig-

ure 4E). Each targeted region is separated by over 1 Mb in the

linear genome (Figure S4D). In PFA tumor resections, the

TULIP-targeted FISH probes are observed as individual puncta,

separated from the control region probes (Figure 4F). Equivalent

imaging of PFB tumors indicate that the TULIP FISH signal is

more diffuse in this EPN subtype (Figure 4G), occupying signifi-

cantly more area in each image (Wilcoxon Rank Sum p = 2.2E-

11; Figure 4H). Our oligo-FISH experiments using clinical sam-

ples validate and confirm Hi-C predictions that TULIPs exist in

PFA samples and strongly interact with each other in the 3D nu-

clear space.

We next assessed the genomic distribution of TULIPs. Strik-

ingly, TULIPs frequently occurred at the same genomic coordi-

nates across PFA samples, including PFA patient-derived cul-

tures (Figure 4I). Recurrent TULIPs, conservatively defined here

as TULIPs that occur in at least 20% of PFA samples, occupied

8% of the genome (257 Mbp of 3,088 Mbp, genome reference

hg38) with a median TULIP size of 950 kbp (Table S6). PFA pri-

mary cultures displayed TULIP calls at the same genomic coor-

dinates as primary tumor specimens (Figure 4I), indicating that

these 3D genome features are maintained in patient-derived

models. TULIP calls often occurred at pericentromeric and telo-

meric regions but were also located at other chromosomal re-

gions (Figure 4J). Overall, TULIPs are quantifiable and recurrent

3D genome features in PFA tumors.

Long-read nanopore sequencing of 4 PFA samples in our Hi-C

cohort found no mismatched or split-read alignments at the
ent values represent the mean Obs/Exp value for genomic bins within the 5%

ts and intra-chromosomal contacts separated by <10 Mb. P value indicates

C).
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boundaries of recurrent TULIPs (data not shown). Furthermore,

repeating our analysis of inter-TULIP interaction strength using

a Hi-C normalization method that accounts for the presence of

copy-number variations (CNVs) in the genome40 (Figure S4E),

we found no evidence that TULIP signals might be a conse-

quence of structural variants.

The local chromatin architecture around TULIPs is
distorted in PFA tumors
Having established that TULIPs participate in unusually strong

and long-range interactions, we next investigated the relation-

ship between TULIPs and their surrounding topological features.

First, we measured loop strength after assigning loops to one of

three categories based on loop position relative to recurrent

TULIPs (Figure 5A): loops with (1) both anchors outside of

TULIPs (loops outside), (2) both anchors within a TULIP (loops in-

side), or (3) one of the two anchors in a TULIP (loops in/out). In/

out loops were significantly weaker than loops fully inside

TULIPs (Wilcoxon rank-sum test p = 1.9E-2) or loops that were

completely anchored outside of TULIPs (Wilcoxon rank-sum

test p = 2.5E-9; Figure 5B), further contributing to the notion

that TULIPs are discrete domains insulated from neighboring re-

gions. However, independently of position with respect to

TULIPs, all three categories of loops were weaker in PFAs than

in non-PFA EPNs (loops outside, Figure S5A p < 2.2E-16; in/

out loops, Figure S5B, p = 2.0E-11; or fully anchored inside

TULIPs, Figure 5C, p = 2.5E-14 by Wilcoxon rank-sum test).

This is consistent with TULIPs being depleted of interactions

with adjacent non-TULIP regions (Figures 5D–5F), further sup-

porting the hypothesis that these PFA-specific 3D structures

are strongly insulated from the rest of the genome.

We also noticed that some TULIP-flanking regions in type A

compartments displayed elevated interaction frequency with

each other, albeit considerably weaker than the interactions

among TULIPs themselves (Figures 5G–5I). We therefore asked

how the presence of TULIPs in the PFA genome might influence

overall compartmentalization status. We applied CALDER41 to

our Hi-C data to assign genomic bins along the spectrum of

compartmentalization status ranging from most open (A.1.1) to

most closed (B.2.2) and subsequently compared the genome

compartmentalization status for each bin. In a pairwise compar-

ison between a PFA and a PFB, we observed that 71% of

genomic bins had unchanged compartment status, predomi-

nately in A.1.1 or B.2.2 (Figure S5C). Surprisingly, the bins that
Figure 4. PFAs are characterized by TULIPs, 3D structures with high in

(A) Aggregate inter-TULIP interaction strength for representative PFA (E2074) and

flanked by a genomic region of equal size upstream (-L) and downstream (+L) of

(B) Mean observed/expected value for each 50-kbp bin, separated by interacting

<10 Mbp apart. PFA: E2074; PFB: E1859.

(C) CSynth model comparing TULIP distribution in 3D space for PFA (E2074).

(D) CSynth model comparing TULIP distribution in 3D space for PFB (E1859).

(E) Schematic of oligo-FISH probe design. TULIP probes in red. Type A compart

(F) Oligo-FISH signal from PFA surgical resection.

(G) Oligo-FISH signal from PFB surgical resection.

(H) Comparison of area covered by TULIPs in PFA against corresponding genom

(I) Genomic coordinates of TULIPs across multiple PFA samples. Displayed regio

(J) Genomic coordinates of recurrent TULIP calls.

See also Figure S4 and Table S6.
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did exhibit altered compartmentalization status tended to be

more open in PFAs when compared to PFBs (Figure S5C),

whereas comparison between pairs of PFA samples did not

show a similar bias toward open compartmentalization status

(Figure S5D). To extend this analysis to include all samples and

to compare between tumor subgroups, we derived the

consensus compartment status (mode average) for each sub-

group. Comparing the PFA consensus to the PFB consensus

compartmentalization, we observe that the number of bins

transitioning from B to A is three times greater than the number

transitioning from A to B (Figure 5J). By comparing each sample

individually against the non-tumor brain consensus compart-

mentalization, PFA samples exhibited a significant bias toward

open compartmentalization status while PFB, STE, or spinal

EPN tumors did not (Figure 5K, two-sided t test with H0: mu =

0, H1: mus 0, p = 5.6E-10). Furthermore, pairwise comparisons

between PFA samples and consensus compartmentalization

status for each tumor subgroup showed a consistent and signif-

icant bias toward open compartmentalization in PFA (Figure S5E,

two-sided t test with H0: mu = 0, H1: mus 0, p% 2.6E-08 for all

comparisons). Finally, we asked whether these compartment

transitions impacted transcription and found that transcription

was elevated among the bins that had undergone type B-to-A

transition, consistent with higher transcription in regions with

more open chromatin (Figure 5L). Therefore, compartmentaliza-

tion of the 3D genome of PFA exhibits two extreme behaviors,

with TULIPs representing strongly compacted regions and other

regions of the genome acquiring globally more relaxed and tran-

scriptionally active conformations.

TULIP interactions depend on high levels of the
repressive chromatin mark H3K9me3
We next sought to describe the chromatin landscape of TULIPs.

We performed chromatin immunoprecipitation with sequencing

(ChIP-seq) for the repressive histone marks H3K27me3 and

H3K9me3 on ten PFA samples where sufficient primary tissue re-

mained available for analysis. Broad regions of high H3K9me3

signal showed considerable overlap with recurrent TULIP loci

(Figure 6A). In fact, strong ChIP signal for H3K9me3 was highly

predictive for the presence of TULIPs at any given genome re-

gion (Figures 6A and S6A), suggesting that TULIPs may form at

regions enriched for H3K9me3. Regions of TULIPs and broad

H3K9me3 peaks occurred closer together than expected by

chance (Figure 6B; p = 3.2E-8) and exhibited significant overlap
teraction strength across long distances

PFB (E1859). Regions have been rescaled such that each TULIP of length L is

the TULIP.

compartment types, excluding signal from contacts between regions that are

ment probes in green. Diagram is not drawn to scale.

ic regions in PFB. P values were calculated using Wilcoxon rank-sum test.

n is chromosome 2.
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(Fisher’s exact p < 1.5E-66). In contrast, H3K27me3, which is

known to be largely depleted in PFA, did not show consistent

enrichment within TULIPs (Figure S6B). Considering the strong

enrichment of H3K9me3 within recurrent TULIPs, we performed

H3K9me3 immunofluorescence to see if the sub-nuclear locali-

zation of this histone mark is consistent with the predicted orga-

nization of TULIPs within cell nuclei. In PFA, H3K9me3 formed

large foci throughout the nucleus (Figure 6C) in contrast to PFB

EPN, where H3K9me3 was more distributed throughout the

nuclei (Figure 6D). These results are congruent with the notion

that H3K9me3+ TULIPs aggregate in the 3D space of the PFA

nucleus.

H3K9me3+ heterochromatin is often associated with HP1-

family proteins, which link heterochromatin to the nuclear mem-

brane. Given the unusual localization of H3K9me3+ TULIPs in

PFA, we tested whether TULIPs are associated with HP1 pro-

teins in PFA cells by immunofluorescence. Overall, HP1 proteins

localized to the large foci of H3K9me3, with HP1g showing

the strongest colocalization and HP1a being more diffuse

throughout the nucleus (Figures 6E and S6C).We next embarked

on analyses to reconstruct the genomic and epigenomic context

of TULIPs. First, we compared TULIPs with other genomic anno-

tations associated with chromatin activity. Annotations for pro-

tein coding regions (GENCODE v34 annotations) and H3K27ac

peaks in PFA42 were both depleted within TULIPs (Figures S6D

and S6E). Overall, these data support a heterochromatic identity

for TULIPs.

Among all repetitive elements, young ERV (endogenous retro-

virus) family members were strongly enriched in TULIPs, partic-

ularly ERV1, ERVL, and ERVK elements (Figure S6F), which tend

to be enriched in heterochromatic regions of the genome.43 Alto-

gether, these results suggest that TULIPs are heterochromatic

regions distinct from type B compartments.

Considering theH3K9me3ChIP signal associatedwith TULIPs

(Figures 6A and 6B), we asked whether enrichment of H3K9me3

is functionally important for the maintenance of TULIPs. For our

functional studies, we used inhibitors of G9a/GLP, which are

responsible for the deposition of H3K9me2, and chaetocin,

which inhibits SUV39H1 and SUV39H2, two enzymes respon-

sible for the deposition of H3K9me3. Treatment of PFA patient-

derived cultures with the G9a/GLP inhibitor UNC0642 resulted

in an increased number of detectable individual foci (Figures

6F and S6G) and a larger radius per puncta detected (Figure 6G)
Figure 5. TULIPs distort local 3D topology

(A) Schematic of different potential loop positions relative to TULIPs.

(B) Comparison of looping interactions within PFAs, separated by their position r

zontal lines indicate 25th, 50th, and 75th percentiles.

(C) Comparison of interactions of loops inside TULIPs in PFA and non-PFA epend

indicate 25th, 50th, and 75th percentiles.

(D–F) Hi-C contact maps contrasting interactions between adjacent domains in (

(G–I) Hi-C contact maps focusing on the interaction patterns of type A compartm

(H) the ratio of observed to expected contacts and (I) an enlargement of the squ

(J) Comparison of consensus compartment status between PFA and PFB using CA

triangle = type A-to-B transition.

(K) Summary of pairwise comparisons between individual samples and non-tumo

mean s 0.

(L) Heatmap displaying the average log2 fold change in RNA-seq comparing PFA

See also Figure S5.
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in oligo-FISH assays described above to detect TULIPs. These

results support the notion that loss of H3K9 methylation leads

to ‘‘melting,’’ or weaker interactions, among TULIPs. Two

distinct G9a/GLP inhibitors (UNC0642 and A366) were also

effective at impairing cell viability of four patient-derived PFA

primary cultures, with IC50 concentrations generally <1 mM (Fig-

ure 6H). Collectively our data indicate that aggregation of TULIPs

in the 3D nuclear space of PFA cells depends on the mainte-

nance of robust levels of H3K9me3 and that TULIP interactions

are important for PFA cell viability.

EZHIP promotes TULIP formation
Given that EZHIP is expressed in most PFA tumors, we tested

the hypothesis that this protein might be involved in TULIP for-

mation. We stably expressed EZHIP in primary cultures enriched

for human neural progenitor cells (hNPCs). Assessment of pro-

tein levels by western blot confirmed that expression of EZHIP

in these cells (EZHIP OE [overexpression]) was robust, with no

orminimal expression of EZHIP in hNPCs transfectedwith empty

control vector (Figure 7A). EZHIP overexpression resulted in

reduced H3K27me3 levels (Figure S7A) and increased

H3K27ac (Figure S7B), recapitulating the known physiological

functions of this protein.

We then investigated whether EZHIP expression alters func-

tional properties of hNPCs. Cell proliferation—assessedby incor-

poration of the thymidine analog EdU (5-ethynyl-2’-deoxyuridine;

see STAR Methods)—showed that EZHIP OE cells had an �2-

fold increase in the fraction of EdU+ cells compared to control

cells (Figures 7B and 7C). However, EZHIP expression did not

affect self-renewal of hNPCs, assessed with in vitro limiting dilu-

tion assays (data not shown). The positive effect of EZHIP on

hNPC proliferation supports its role in the pathophysiology of

PFA EPN.

Next, we asked whether EZHIP expression affects chromatin

architecture. Given that TULIPs are exquisitely enriched with

H3K9me3, we focused on this histone mark for our experiments.

Using immunofluorescence, we found that EZHIP OE cells

formed large foci of H3K9me3+ chromatin located in central po-

sitions of the nucleus and that were highly reminiscent of TULIPs

(Figure 7C), in marked distinction from control cells (Figure 7E).

These results were highly reproducible in different hNPC

EZHIP OE models we generated (Figures S7C and S7D). To

further test the functional role of EZHIP in restructuring
elative to TULIPs. Distributions were compared using two-sided t tests. Hori-

ymoma. Distributions were compared using two-sided t-tests. Horizontal lines

D) PFA and (E) PFB. Black rectangles in (F) highlight TULIP-adjacent contacts.

ents adjacent TULIPs in PFA. The heatmaps display (G) observed contacts,

are outlined with dashed lines in (H).

LDER. For PFA compared to PFB, yellow triangle = type B-to-A transition; blue

r consensus compartmentalization. Two-sided t test with H0: mean = 0 and H1:

to non-PFA EPN within each of the compartment transitions displayed in (J).



Figure 6. TULIPs are associated with features of heterochromatin
(A) Genome tracks for H3K9me3 ChIP (green) and recurrent TULIPs (orange). Inset dashed line corresponds to genome range in Figure S6B.

(B) Relative distance between TULIP calls and broad regions of H3K9me3. Dashed cyan line indicates expected distribution for random association. p-value

calculated using one-sided t test for the fraction of observations at relative distance = 0 vs. the expected value of 0.02.

(legend continued on next page)

ll
OPEN ACCESS

Cell 187, 1–20, September 5, 2024 13

Please cite this article in press as: Johnston et al., TULIPs decorate the three-dimensional genome of PFA ependymoma, Cell (2024), https://
doi.org/10.1016/j.cell.2024.06.023

Article

mailto:Image of Figure 6|tif


ll
OPEN ACCESS

Please cite this article in press as: Johnston et al., TULIPs decorate the three-dimensional genome of PFA ependymoma, Cell (2024), https://
doi.org/10.1016/j.cell.2024.06.023

Article
heterochromatin, we performed transient expression of either

WT or a mutant form of EZHIP with an R405E amino acid substi-

tution, which affects the conserved peptide of EZHIP and blocks

its direct inhibition of PRC2.5 As expected, transient expression

of EZHIP resulted in the formation of large and intense foci of

H3K9me3, whereas the H3K9me3+ foci were smaller and less

intense in cells expressing EZHIP R405E (Figures 7F–7H and

S7E). EZHIP expression in hNPCs therefore leads to restructur-

ing of H3K9me3+ chromatin to form large foci located in central

regions of the nuclei that are highly reminiscent of TULIPs in PFA

cells. Similar to TULIPs, the large H3K9me3+ foci in EZHIP OE

cells colocalize with HP1g (Figure S7F). Consistent with estab-

lished the role of HP1 proteins in maintaining heterochromatin

regions in liquid condensates, treating EZHIP OE hNPCs with

1,6-hexanediol destabilized the H3K9me3+ foci in a concentra-

tion-dependent fashion (Figure S7G).

The formation of large foci of H3K9me3+ chromatin EZHIP OE

cells occurred without significant changes in the global levels of

H3K9me3 (Figure S7H). These results, together with the enrich-

ment of H3K9me3 at TULIPs in PFA cells (Figures 6A, 6B, and

S6A), suggest that TULIPs might arise from large-scale reorgani-

zation of H3K9me3. Altogether, our experiments suggest that

TULIPs arise through EZHIP-mediated global reorganization of

H3K9me3 and chromatin in the PFA nucleus.

DISCUSSION

Dysregulation of 3D genome architecture has not yet been

extensively explored in the context of cancer and especially

childhood malignancies. Our approach of generating Hi-C data-

sets from a large cohort of samples spanning multiple tumor

types enabled the identification of recurrent, PFA-specific 3D

genome features and allowed their contextualization with other

malignancies and with non-malignant tissues.

Our Hi-C studies revealed that PFA EPN is characterized by

private 3D genome architecture. PFA stood out among pediatric

brain malignancies for possessing 3D structures that we defined

as TULIPs, special cases of type B compartmentalization that

occur at recurrent positions across PFAs. Given the paucity of

recurrent genetic coding events in PFA, the identification of

TULIPs as recurrent 3D genome features in this cancer type is

particularly meaningful. Our data suggest that TULIPs are

defining characteristics of PFA.

The molecular mechanism that leads to formation of TULIPs

was an important question we aimed to address. Our data indi-

cate that EZHIP expression is at least partially responsible for

their formation. Although the exact molecular events linking
(C) Immunofluorescence for H3K9me3 (purple) in a PFA surgical specimen. Scal

(D) Immunofluorescence for H3K9me3 (purple) in a PFB surgical specimen. Scal

(E) Immunofluorescence for HP1g (purple) and H3K9me3 (green) in a PFA surgic

(F) Quantification of oligo-FISH foci per cell. Oligo-FISH probes were designed to d

was calculated with the Wilcoxon test.

(G) Quantification of TULIP signal radius determinedwith oligo-FISHprobes image

UNC0642. P value was calculated with the Wilcoxon test.

(H) Dose-response curve for two G9a/GLP inhibitors (A366 and UNC6042) in f

represent standard deviation.

See also Figure S6.
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EZHIP and TULIP formation need to be further investigated,

the data we generated hint at a potential mechanism. EZHIP

expression leads to global loss of H3K27me3, as previously es-

tablished.6,11 This leaves large blocks of constitutive heterochro-

matin marked by H3K9me3 to become more insulated from the

rest of the genome, and to interact with each other more

strongly, leading to the formation of TULIPs. This model is

consistent with heterochromatin having a strong tendency to

self-interaction, which is the fundamental basis for the organiza-

tional principles of chromatin in the 3D nuclear space.44 TULIPs

might therefore be primed to strong interactions among each

other because of their heterochromatic nature, and because

their interactions are not ‘‘diluted’’ by interactions among neigh-

boring regions of facultative heterochromatin marked by

H3K27me3. This causal link could explain why both EZHIP and

TULIPs are virtually universal molecular features of PFA EPN.

However, EZHIP might also play a more direct role in the estab-

lishment of TULIPs because H3K27me3 depletion may not be

sufficient for TULIP formation, given that histone-3-mutant

HGG samples are also depleted of this histone mark9,11 but

lack TULIPs. Alternatively, the function of EZHIP in initiating

TULIPs might be enabled by a specific epigenetic state of the

cell of origin of PFA EPN. Future work will need to determine

whether EZHIP expression and TULIP formation are features of

the PFA cell of origin or if these characteristics are acquired at

later stages of the tumorigenic process.

The picture that emerges from our studies indicates that the

3D genome of PFA tumors is an ensemble of extremes: re-

gions that are normally compacted become extremely com-

pacted (TULIPs), while regions outside of TULIPs, including

other type B compartments, appear more relaxed overall.

Chromatin relaxation in PFA was consistent with significant

depletion of loops and pervasive transcription, suggesting

dysregulation of transcriptional control. We therefore propose

that TULIPs are the last bastions of heterochromatin in a

genome that is globally more relaxed and transcriptionally

active (Figure 7G).

The global relaxation of chromatin and the compartment orga-

nization (Figures 3A–3C) we observed in PFA are reminiscent of

what has been reported in embryonic stem cells45 and in undif-

ferentiated malignant cells in adult glioblastoma.46 We therefore

speculate that the 3D genome of PFA is shaped to maximize the

stemness characteristics of these malignant cells to propagate

the tumor.

TULIPs are often surrounded by type A compartments that

strongly interact with each other. We think it is possible that

TULIPs may act in some circumstances as scaffolds for
e bar: 50 mm

e bar: 50 mm

al specimen. Scale bar: 50 mm

etect three TULIPs located on chromosome 8, as described in the text. p-value

dwith confocalmicroscopy. PFA cells were treatedwith DMSO (control) or with

our PFA patient-derived cultures (PFA2, PFA7, PFA4, and PFA9). Error bars



Figure 7. TULIP aggregation is dependent upon the H3K9me3 histone mark
(A) EZHIP protein levels in hNPC overexpression models were assessed by western blot.

(B) Immunocytochemistry for EdU in EZHIP overexpression and control cells. Scale bar: 20 mm

(legend continued on next page)
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hairpin-like strong type A compartment interactions, whichmight

be required to bring actively transcribed regions together, as

previously reported in primary immune cells.47 This compart-

ment organization would be an efficient way of orchestrating

local regions of active transcription and potentially segregate

active and inactive regulatory regions in 3D space.

Surprisingly, we could find no evidence that TULIPs directly

participate in regulating gene expression. Although it might

appear paradoxical that an inherently epigenetic structure like

TULIPs does not affect gene transcription levels, our finding is

in line with recent papers that clearly demonstrated a lack of

direct correlation between 3D genome topology and gene

expression. For instance, acute depletion of cohesin48 or

CTCF49 lead to erasing TADs or loop domains, and yet only a

few genes were differentially expressed. The 3D genome has

roles other than gene regulation, including modulation of DNA

repair and mutational rates50 and control of DNA replication

timing (reviewed in Flyamer et al.51).

In conclusion, our comparative 3D genome studies highlighted

previously unknown features of PFAs, including TULIPs and a

generalized reorganization of genome topology. Our findings

strengthen the hypothesis that PFA is a tumor type exquisitely

shaped by epigenomic forces.
Limitations of the study
Ideally, the functional significance of TULIPs in PFAwould be as-

sessed through genome engineering approaches that delete

multiple TULIPs at once. However, the average size of TULIPs

is approximately 1 Mb, making the removal of multiple TULIPs

in the same cell prohibitively difficult with current techniques.

This problem is exacerbated by the difficulty of working with

the few PFA patient-derived models that are currently available.

However, the exquisite enrichment of H3K9me3 at TULIPs pro-

vided an opportunity to target these regions genome-wide with

epidrugs and assess their functional significance. Inhibiting

H3K9 methylation ‘‘melted’’ TULIPs and reduced PFA cell

viability at low concentrations in vitro. These functional studies

therefore established that TULIPs are functionally important for

PFA cells. Although the compounds we used are not clinical

grade, we envision the development of future epidrugs capable

of inhibiting H3K9 methylation in clinical settings.
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61. Ramı́rez, F., Ryan, D.P., Grüning, B., Bhardwaj, V., Kilpert, F., Richter,

A.S., Heyne, S., Dündar, F., andManke, T. (2016). deepTools2: a next gen-

eration web server for deep-sequencing data analysis. Nucleic Acids Res.

44, W160–W165. https://doi.org/10.1093/nar/gkw257.

62. Kim, D., Paggi, J.M., Park, C., Bennett, C., and Salzberg, S.L. (2019).

Graph-based genome alignment and genotyping with HISAT2 and

HISAT-genotype. Nat. Biotechnol. 37, 907–915. https://doi.org/10.1038/

s41587-019-0201-4.

63. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth,

G., Abecasis, G., and Durbin, R.; 1000 Genome Project Data Processing

Subgroup (2009). The Sequence Alignment/Map format and SAMtools.

Bioinformatics 25, 2078–2079. https://doi.org/10.1093/bioinformatics/

btp352.

64. Anders, S., Pyl, P.T., and Huber, W. (2015). HTSeq–a Python framework to

work with high-throughput sequencing data. Bioinformatics 31, 166–169.

https://doi.org/10.1093/bioinformatics/btu638.

65. Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth,

G.K. (2015). limma powers differential expression analyses for RNA-

sequencing and microarray studies. Nucleic Acids Res. 43, e47. https://

doi.org/10.1093/nar/gkv007.

66. Pertea, M., Pertea, G.M., Antonescu, C.M., Chang, T.-C., Mendell, J.T.,

and Salzberg, S.L. (2015). StringTie enables improved reconstruction of

a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295.

https://doi.org/10.1038/nbt.3122.

67. Pertea, M., Kim, D., Pertea, G.M., Leek, J.T., and Salzberg, S.L. (2016).

Transcript-level expression analysis of RNA-seq experiments with

HISAT, StringTie and Ballgown. Nat. Protoc. 11, 1650–1667. https://doi.

org/10.1038/nprot.2016.095.

68. Pertea, G., and Pertea, M. (2020). GFF Utilities: GffRead and GffCompare.

F1000Res. 9. ISCBCommJ-304. https://doi.org/10.12688/f1000research.

23297.2.

69. Bray, N.L., Pimentel, H., Melsted, P., and Pachter, L. (2016). Near-optimal

probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527.

https://doi.org/10.1038/nbt.3519.

70. Zhang, A.W., O’Flanagan, C., Chavez, E.A., Lim, J.L.P., Ceglia, N.,

McPherson, A., Wiens, M., Walters, P., Chan, T., Hewitson, B., et al.

(2019). Probabilistic cell-type assignment of single-cell RNA-seq for tumor

microenvironment profiling. Nat. Methods 16, 1007–1015. https://doi.org/

10.1038/s41592-019-0529-1.

71. Newman, A.M., Steen, C.B., Liu, C.L., Gentles, A.J., Chaudhuri, A.A.,

Scherer, F., Khodadoust, M.S., Esfahani, M.S., Luca, B.A., Steiner, D.,

et al. (2019). Determining cell type abundance and expression from bulk

tissues with digital cytometry. Nat. Biotechnol. 37, 773–782. https://doi.

org/10.1038/s41587-019-0114-2.

72. Krueger, F., and Andrews, S.R. (2011). Bismark: a flexible aligner and

methylation caller for Bisulfite-Seq applications. Bioinformatics 27,

1571–1572. https://doi.org/10.1093/bioinformatics/btr167.
73. Hao, Z., Lv, D., Ge, Y., Shi, J., Weijers, D., Yu, G., and Chen, J. (2020). RI-

deogram: drawing SVG graphics to visualize and map genome-wide data

on the idiograms. PeerJ. Comput. Sci. 6, e251. https://doi.org/10.7717/

peerj-cs.251.

74. Ramı́rez, F., Bhardwaj, V., Arrigoni, L., Lam, K.C., Grüning, B.A., Villave-
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

H3K9me3 antibody (Active motif) Active Motif Cat# 39161; RRID: AB_2532132

H3K27me3 antibody (Diagenode) Diagenode Cat# C15410069; RRID: AB_2814977

H3K27me3 antibody (Cell Signaling) Cell Signaling Cat# CST 9733

H3K9me3 antibody (Abcam) Abcam Cat# Ab8898; RRID: AB_306848

Invitrogen goat anti rabbit antibody Alexa 647 Invitrogen Cat# A-21245

Goat Anti-HP1alpha antibody (ChIP grade) Abcam Cat# Ab77256; RRID: AB_1523784

Mouse HP1gamma Monoclonal Antibody Thermo Fisher Scientific Cat# 2MOD-1G6

Donkey anti-Rabbit IgG (H + L), Alexa Fluor� 647 Thermo Fisher Scientific Cat# A31573; RRID: AB_2536183

Donkey anti-goat IgG (H + L), Alexa Fluor� 647 Thermo Fisher Scientific Cat# A21447; RRID: AB_2535864

Goat anti-Mouse IgG (H + L) Cross-Adsorbed

Secondary Antibody, Alexa Fluor� 488

Thermo Fisher Scientific Cat# A-11001; RRID: AB_2534069

Rabbit anti-EZHIP polyclonal antibody Millipore Cat# ABC1378

Histone H3 K27Ac Antibody Active Motif Cat# 39134; RRID: AB_2722569

Goat anti-rabbit IgG H&L (hrp) Abcam Cat# ab6721; RRID: AB_955447

Biological samples

Tissue – primary medulloblastoma This paper N/A

Tissue – primary ependymoma (PFA, PFB, ST) This paper N/A

Tissue – primary pediatric glioma This paper N/A

FFPE blocks for brain tumor tissues This paper N/A

Chemicals, peptides, and recombinant proteins

DAPI Thermo Fisher Scientific Cat# 62248

Prolong Diamond Antifade Life Technologies Cat# P36965

EGF Sigma-Aldrich Cat# E9644

FGF Peprotech Cat# 100-18B

Heparin Sigma-Aldrich Cat# H3393

NeuroCult NS-A Basal Medium (Human) Stemcell Technologies Inc. Cat# 05750

N2 Supplement (100X) Thermo Fisher Scientific Cat# 17502048

B27 Supplement (50X), minus vitamin A Thermo Fisher Scientific Cat# 12587010

Glutamax Thermo Fisher Scientific Cat# 35050061

BSA Sigma-Aldrich

NeuroCult� Proliferation Supplement (Human) Stemcell Technologies Inc. Cat# 05753

poly-L-ornithine Sigma-Aldrich Cat# P4957

laminin Sigma-Aldrich Cat# L2020

1,6-hexanediol Sigma-Aldrich Cat# 240117-50G

UNC0642 Structural Genomics Consortium N/A

A366 Structural Genomics Consortium N/A

Chaetocin Cayman Chemical Cat# 28097-03-2

Alamar blue Thermo Fisher Scientific Cat# DAL1025

Piggybac transposase System Biosciences Cat# PB210PA-1

Critical commercial assays

Detergent compatible protein assay Bio-Rad Cat# 5000112

dsDNA BR Assay Kit Thermo Fisher Scientific Cat# Q32853

Femto Pulse Agilent Technologies Cat# FP-1002-0275
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REAGENT or RESOURCE SOURCE IDENTIFIER

ClickIT� Plus EdU Cell Proliferation,

Alexa Fluor� 647 Imaging Kit

Thermo Fisher Scientific Cat# C10640

mouse neural stem cell nucleofection kit Lonza Cat# VPG-1004

Deposited data

Gene Expression Omnibus (GEO): GSE186599 This paper N/A

Mendeley Data: http://doi.org/10.17632/k4x43trfd9.1 This paper N/A

European Genome-Phenome Archive (EGA):

EGAS00001005476

This paper N/A

Experimental models: Cell lines

Primary cell cultures - MDT-PFA EPN Michealraj et al.52 N/A

Oligonucleotides

Custom oligo-FISH probes against compartment

B regions (chr8:34200000–35500000,

chr8:394500000–39800000, chr8:43250000-

43750000), tagged with ATTO-647

This paper; myTags,

Arbor Biosciences

N/A

Custom oligo-FISH probes against compartment

A regions (chr8:3775000–38450000,

chr8:41500000-42050000), tagged with Alexa 488

This paper; myTags,

Arbor Biosciences

N/A

Recombinant DNA

pPB[Exp]-Puro-EF1A > hEZHIP

[NM_203407.3] construct

This paper;

Vector Builder

VB220623-1246rfk

pPB[Exp]-Puro-EF1A>TurboRFP This paper;

Vector Builder

VB900129-0773jdw

EF1a-EZHIP (WT)-turboRFP-Luc Jain et al.5 N/A

EF1a-EZHIP (R405E)-turboRFP-Luc Jain et al.5 N/A

Software and algorithms

Juicer (v1.6), CPU Durand et al.26 N/A

bwa (v0.7.17) Li and Durbin53 N/A

Java (openjdk = 8.0) https://openjdk.org/projects/jdk8/ N/A

hic2cool (v0.8.3) https://github.com/4dn-dcic/hic2cool N/A

cooler (v0.8.10) Abdennur and Mirny,54 https://github.

com/open2c/cooler

N/A

RobusTAD (v1.0) Dali et al.30 N/A

Juicer Tools (v1.19.02) https://github.com/aidenlab/JuicerTools N/A

OneD (commit 5b1fdae) Vidal et al.,55 https://github.com/

qenvio/dryhic

N/A

TADpole (commit f4b1f62) Soler-Vila et al.,29 https://github.com/

3DGenomes/TADpole

N/A

cooltools (v0.4.0) https://github.com/open2c/cooltools N/A

Mustache (v1.0.1) Roayaei Ardakani et al.,27 https://github.

com/ay-lab/mustache

N/A

Chromosight (v1.6.1) Matthey-Doret et al.28 N/A

HiC-DC+ v(0.99.14) Sahin et al.,32 Carty et al.56 N/A

DESeq2 (v1.30.1) Love et al.57 N/A

bedtools (v2.26.0) Quinlan et al.58 N/A

ImageMagick (v7.0.10_28) https://imagemagick.org N/A

Coolpup (v0.9.5) Flyamer et al.59 N/A

NeoLoopFinder (v0.2.3) Wang et al.40 N/A

Pairtools (v0.3.0) https://github.com/open2c/pairtools N/A

CALDER (v0.1) Liu et al.41 N/A

(Continued on next page)

ll
OPEN ACCESS

e2 Cell 187, 1–20.e1–e10, September 5, 2024

Please cite this article in press as: Johnston et al., TULIPs decorate the three-dimensional genome of PFA ependymoma, Cell (2024), https://
doi.org/10.1016/j.cell.2024.06.023

Article

http://doi.org/10.17632/k4x43trfd9.1
https://openjdk.org/projects/jdk8/
https://github.com/4dn-dcic/hic2cool
https://github.com/open2c/cooler
https://github.com/open2c/cooler
https://github.com/aidenlab/JuicerTools
https://github.com/qenvio/dryhic
https://github.com/qenvio/dryhic
https://github.com/3DGenomes/TADpole
https://github.com/3DGenomes/TADpole
https://github.com/open2c/cooltools
https://github.com/ay-lab/mustache
https://github.com/ay-lab/mustache
https://imagemagick.org
https://github.com/open2c/pairtools


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

gkmSVM (v0.81.0) Ghandi et al.60 N/A

deepTools v3.5.1 Ramirez et al.61 N/A

VMD (v1.9.3) Humphrey et al.56 N/A

HISAT2 (v2.1.0) Kim et al.62 N/A

Samtools v1.9 Li et al.63 N/A

HTSeq (v0.13) Anders et al.64 N/A

Limma (v3.44) Ritchie et al.65 N/A

StringTie (v2.0) Pertea et al.66,67 N/A

GffCompare (v 0.11.7) Pertea et al.68 N/A

GffRead (v0.11.7) Pertea et al.68 N/A

kallisto (v 0.45.1) Bray et al.69 N/A

CellAssign (v0.99) Zhang et al.70 N/A

CIBERSORTx (web interface) Newman et al.71 N/A

Bismark (v0.22.3) Krueger et al.72 N/A

ROSE (v1.2.0) Whyte et al.,34 Loven et al.35 N/A

R (v4.0.3) https://cran.r-project.org/bin/

windows/base/old/4.0.3/

N/A

broom (v0.7.5) https://broom.tidymodels.org/ N/A

hexbin (v1.28.2) https://github.com/edzer/hexbin N/A

ggpubr (v0.4.0) https://rpkgs.datanovia.com/ggpubr/ N/A

RColorBrewer (v1.1.2) https://cran.r-project.org/web/

packages/RColorBrewer/index.html

N/A

tidyverse (v1.3.0) https://www.tidyverse.org/ N/A

RIdeogram (v0.2.2) Hao et al.73 N/A

NMF (v0.21.0) https://renozao.github.io/NMF/ N/A

R (3.6.3) https://cran-archive.r-project.org/

bin/windows/base/old/3.6.3/

N/A

optparse (v1.6.6) https://github.com/python/cpython/

blob/3.12/Lib/optparse.py

N/A

Juicebox (v1.11.08) Durand et al.26 N/A

HiCExplorer (v3.7.2) Ramirez et al.74 N/A

pyGenomeTracks (v3.6) Lopez-Delisle et al.75 N/A

IGV (v2.12.3) Robinson et al.76 N/A

Guppy (v4.0.11) Oxford Nanopore Technologies; https://

community.nanoporetech.com/downloads

N/A

minimap2 (v2.17) Li77 N/A

PycoQC (v2.5.2) https://github.com/tleonardi/pycoQC N/A

SVIM (v1.2.0) Heller and Vingron78 N/A

MACS2 (v2.1.2) Zhang et al.,79 https://github.com/

macs3-project/MACS

N/A

HiCRep (v0.2.5) Yang et al.80 N/A

Other

Kapa HyperPrep Kit Roche Cat# KR0961

Mini-PROTEAN gels Bio-Rad Cat# 4568044

12% Mini-PROTEAN gels Bio-Rad Cat# 4568045

Nanobind Tissue Big DNA Kit Circulomics Cat# NB-900-701-01

Short read eliminator kit Circulomics Cat# SS-100-101-01

Nanopore Ligation Sequencing Kit Oxford Nanopore Technologies Cat# SQK-LSK110

PromethION flow cells Oxford Nanopore Technologies Cat# FLO-PRO002

18 Well m-Slide Glass Bottom Ibidi Cat# 81817
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to the lead contact, Marco Gallo (marco.gallo@

bcm.edu).

Materials availability
Plasmids generated in this study may be made available upon reasonable request following institutional approval of a material trans-

fer agreement (MTA).

Data and code availability
d All processed data have been deposited at GEOand are publicly available as of the date of publication. Restricted data (i.e., raw

Hi-C sequencing files) have been uploaded at EGA. Accession numbers are listed in the key resources table. Original western

blot images have been deposited atMendeley and are publicly available as of the date of publication. TheDOI is listed in the key

resources table. Microscopy data reported in this paper will be shared by the lead contact upon request.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human samples
Primary tumors used in the study were collected and processed after receiving written informed consent based on the guidelines

from Research Ethics Board from the following institutes: Hospital for Sick Children (Toronto, Canada) and McGill University (Mon-

treal, Canada). Statistical methods were not used to predetermine the sample size. Tumor diagnosis, biological sex and age of donor

are listed in Table S1 whenever possible. Sample size descriptions are presented in Figure 1 and Table S1. Sex-based analyses are

presented in the Results section. hNPC primary cultures were derived from samples obtained in accordance with a protocol

approved by the Conjoint Health Research Ethics Board at the University of Calgary.

Primary cell cultures
PFA ependymoma cells were cultured as previously described52 on adherent plates coated with laminin and poly-L-ornithine and

grown in defined ependymoma culture media (serum free Human Neurocult NS-A Basal media (StemCell Technologies) which

was supplemented with N2 (20 ng/mL, Life Technologies), B27 (Life Technologies), EGF (10 ng/mL Life Technologies), FGF

(10 ng/mL Peprotech), heparin (2 mg/mL), BSA (300 mg/mL, Sigma-Aldrich) and 2 mMGlutamine (GlutaMAX, 75 mg/mL, Life Technol-

ogies) under hypoxic conditions. Other primary cells were cultured in a similar fashion on adherent plates, but using HumanNeurocult

NS-A Basal media supplemented with NS-A proliferation supplement (StemCell Technologies), EGF (10 ng/mL Life Technologies)

and FGF (20 ng/mL) Peprotech and heparin (2 mg/mL; StemCell Technologies). hNPC primary cultures were grown as described

above in normoxic conditions.

METHOD DETAILS

Hi-C library preparation
Fresh tissue samples were obtained from The Hospital for Sick Children (Toronto, ON) or Hospital St. Jude (Montreal). Primary cul-

tureswere grown as previously described.52 In situHi-C15 libraries were generated as described previously24 using approximately 2.5

million dissociated cells as input. All Hi-C libraries were sequenced at 150 bp PE with a Hi-Seq X instrument (Illumina) at McGill

Genome Center (Montreal, QC). In total, 72 Hi-C libraries were generated and sequenced, although 8 were subsequently excluded

based on QC metrics (Table S1).

Hi-C data analysis
Contact maps

Juicer (v1.6, CPU)81 was used to process Hi-C library fastqs to ‘.hic’ format contact maps. Dependencies of the Juicer pipeline

included bwa (v0.7.17)53 and Java (openjdk = 8.0). Reads were aligned using hg38 coordinates (GCA_000001405.15_GRCh38_

no_alt_plus_hs38d1_analysis_set). Samples with resolution above 15 kb (as determined by the Juicer script ‘calculate_map_resolu-

tion.sh’) or where less than 10% of all alignable read pairs resulted in long-range contacts (as determined from Juicer’s inter_30.txt

QC file) were excluded from downstream analysis.

Alongside the samples collected for this study, we reprocessed data from the developing brain25 (dbGaP accession number

phs001190.v1.p1). These data were processed equivalently to our collected samples, except for the restriction enzyme specified

to Juicer; HindIII was used for the Won et al. samples, while DpnII was used for the newly collected samples.
e4 Cell 187, 1–20.e1–e10, September 5, 2024

mailto:marco.gallo@bcm.edu
mailto:marco.gallo@bcm.edu


ll
OPEN ACCESS

Please cite this article in press as: Johnston et al., TULIPs decorate the three-dimensional genome of PFA ependymoma, Cell (2024), https://
doi.org/10.1016/j.cell.2024.06.023

Article
Juicer (.hic) files were further converted to multi-resolution cooler (.mcool) files [https://github.com/open2c/cooler,60] using hic2-

cool v0.8.3 [https://github.com/4dn-dcic/hic2cool] to take advantage of additional downstream analysis packages.

Contact domains

To annotate contact domains, hic files were processed using Juicer Tools (v1.19.02) Arrowhead with parameters ‘–ignore-sparsity -k

SCALE’ for the following data resolutions (kb): 10, 25, 50, 100. To compare Arrowhead block scores between samples, we first

defined the union of all domains called across all samples. Arrowhead was subsequently re-run with the parameters ‘feature_list’

and ‘control_list’ set to this domain union to calculate block scores at all positions of interest for each sample. Alternatively, 50kb

contact matrices were first corrected using OneD61 on default settings – a method designed to account for local chromosomal ab-

normalities in cancer samples, after which TADpole29 was ranwith default parameters except for min_clusters = 20 to identify optimal

chromosomal partitioning (i.e., TADs).

To assess boundary scores at the edges of contact domains, RobusTAD (v1.0)30 was runwith parameters ‘–norm = norm’ on 50-kb

Hi-C contact matrices generated by Juicer Tools dump with parameters ‘-d observed SCALE 50000 BP’. Independently, insulation

scores were computed for mcool files at 10-kb resolution with a window size of 100 kb using the diamond-insulation module of cool-

tools v0.4.0 [https://github.com/open2c/cooltools] which implements the approach described in.54 Boundaries were identified as

bins with boundary prominence >0.2, consistent with 4DN standards.

Loops

To annotate chromatin loops, hic files were processed using Juicer Tools (v1.19.02) HiCCUPS with parameters ‘–cpu -m 4096

–ignore-sparsity -k SCALE’ for resolutions (kb): 10, 25. To compare HiCCUPS loop scores between samples, we first defined the

union of all loops called across all samples. HiCCUPS was subsequently re-run with the parameter ‘specified_loop_list’ set to this

loop union to calculate loop scores at all positions of interest for each sample.

Independently, significant long-range interactions were identified from 10-kb contact matrices using Mustache v1.0.1 [https://

github.com/ay-lab/mustache,27] as well as Chromosight v1.6.128 with default parameters. Differential interactions were determined

using the hicdcdiff function from the packageHiC-DC+ v0.99.1432 built on top of DESeq2 1.30.157 with default parameters, where the

number of contacts linking pairs of 10 kb bins were tabulated into a count matrix. Alternatively, the similarity of the submatrix sur-

rounding putative loop pixels to an idealized ‘‘donut’’ loop pattern was evaluated using Chromosight’s quantify module at 10 kb res-

olution, producing a loop score matrix analogous to the aforementioned count matrix. To assess global differences in loop strength,

we compared the normalized loop interaction scores among the union set of loops called in 21 PFA samples and 10 non-PFA epen-

dymomas. For each caller, individual loop positions were filtered to maintain with well-defined (not NA) scores for over 10 samples.

Then, significancewas determined using a two-sided t-test. Thep-valueswere further corrected, per caller, with an FDRcorrection for

multiple testing. A variant of this analysis was performed where loops were subdivided into three groups – inside, outside, in/out –

based on how the loops overlapped TULIP loci, using Wilcoxon rank-sum test instead and without further correction.

Compartments

To annotate chromatin compartments, hic files were processed using Juicer Tools (v1.19.02) Pearsons with parameters ‘SCALE

50000 BP -p’ to return the correlation matrix for each chromosome. Eigenvectors for principal components 1–3 of the Pearson cor-

relation matrix were calculated in R (v4.0.3; https://www.R-project.org/), separated into their positive and negative values, and each

was compared to brain H3K27acChIP signal82 (http://www.roadmapepigenomics.org/data) using ‘bedtools jaccard’ (v2.26.0).58 The

eigenvector with the highest jaccard similarity was selected to represent genome compartmentalization. If the highest jaccard sim-

ilarity corresponded to the negative values of the eigenvector, then the eigenvector was inverted such that positive values correspond

to Type A compartmentalization.

To assess predominant compartment sizes between samples, the first eigenvector of each 100-kb resolution contact matrix was

computed per-arm using the call-compartments module of cooltools v0.4.0, with GC content as the reference track for sign flipping.

Auto-correlation profiles were determined using the acf function from R package stats v4.0.3 with default parameters except na.ac-

tion set to na.pass.

To assess interaction patterns between bins belonging to different quantiles of compartment scores, mcool files were processed

using the compute-saddle module from cooltools v0.4.0 with default parameters at 100-kb resolution using eigenvectors and ex-

pected values from the call-compartments and compute-expected modules, respectively.

To quantify the contact enrichment between extreme type A and type B compartments we first identified genomic bins within the

bottom 5% (type B) or top 5% (type A) of compartment eigenvalues, which correspond to the corners of the compartment saddle

plots. Interactions were filtered to include only intra-chromosomal contacts separated by > 10Mb. Finally, extreme A-A, A-B, or

B-B interaction strength was taken as the mean Observed/Expected values for these interactions.

TULIP interactions

To assess TULIPs, we developed a 2D pixel-based detection algorithm to identify contiguous genomic regions with frequent con-

tacts spanning large genomic distances (Figures S3B–S3I). For each chromosome, we accessed the Observed/Expected (OE) con-

tact matrices using Juicer Tools dump with parameters ‘-d oe SCALE 50000 BP’. In an approach similar to Ranked Ordering of

SuperEnhancers (ROSE),38,39 the values within the OE matrix were sorted in ascending order, and a threshold OE value was defined

where the slope of OE vs. value rank was greater than 1. The threshold OE value was typically in the range 5–10, and the OE matrix

was subsequently binarized to 0 or 1 using this threshold value. Separate files were generated for each combination of compartment

type interactions (i.e., A-A, B-B, or A-B interactions). The binarized OE matrices were then converted to 8-bit PGM image format for
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pixel-based signal smoothing in ImageMagick (v7.0.10_28; https://imagemagick.org). The command ‘convert -morphology Close

Diamond -morphology Open Diamond -morphology Smooth Square:3’ was used to filter out dispersed or isolated signal while

retaining broad, highly interconnected regions. PGM pixels were converted back to genomic bins in BEDPE and BED format, and

interactions separated by less than 10 Mb were excluded. Finally, bedtools genomecov was run on the resultant BED files with pa-

rameters ‘-bga’ to count the total number of distant bins that each bin interacts with, and bins with fewer than 10 interacting bins were

excluded from the final BED file. TULIPs were defined by the BED file containing B-B type interactions.

To assess the strength of interactions between TULIP regions, we applied off-diagonal pile-up analysis to the union set of TULIP

regions with genomic separation >10 Mb using coolpup.py (v0.9.5)59 with parameters ‘–rescale –mindist 10000000’. A summary

value of each pile-up plot ("inter-TULIP contacts") was taken as the average OE value between rescaled TULIP regions (i.e., the cen-

ter 33x33 square).

To assess the effects of predicted CNVs on TULIP interactions, interaction strength was calculated both with conventional matrix

normalization (ICE) and CNV-aware matrix balancing as implemented by NeoLoopFinder40 with default parameters to take mapp-

ability, GC content, restriction fragment size, and predicted CNV profiles into account.

Comparison Hi-C datasets

To provide context for the samples in our study, we compared our in-house Hi-C data to multiple previously published datasets

(Table S5). Raw Hi-C sequencing data was downloaded from the GEO repository and processed them with distiller (https://

github.com/open2c/distiller-nf). Reads weremapped to hg38 using bwamemwith option -SP and the aligned reads were processed

with pairtools (https://github.com/open2c/pairtools) to remove duplicates (allowing 1 bp mismatch) and low quality read pairs

(MAPQ<10) to produce a set of valid read pairs. Valid pairs were binned into fixed-sized bins and created contact matrices at 1

kb, 5 kb, 50 kb resolutions using cooler.54 Lastly, we used the cooler balance function to normalize all contact matrices using the

iterative correction procedure.83

Biases in chromatin compartmentalization changes

CALDER was used to assign genome compartmentalization status into eight categories spanning the spectrum of chromatin acces-

sibility ranging frommost open (A.1.1) to most closed (B.2.2). CALDER was run at 50-kb resolution separately for each chromosome,

then genome-wide results were merged for each sample. For each tumor subgroup, we generated subgroup-specific consensus

compartmentalization calls by identifying the most frequent compartmentalization status for each bin among samples within that

subgroup. In the case of two statuses being equally prevalent, one of the two most common statuses was selected randomly. We

then performed pairwise comparisons between sample:sample pairs or sample:subgroup consensus pairs to quantify the number

of genomic bins exhibiting each category of compartmentalization change. To summarize biases in chromatin opening or closing

into a single value, we calculated the log2(open/close), where the ratio represents the number of more open bins divided by the num-

ber of more closed bins. When calculating this ratio, we excluded counts for bins that remained in the sameCALDER status or shifted

by only one CALDER compartmentalization category, thereby enforcing a minimum compartmentalization change of at least two

CALDER categories. Two-sided t-tests were performed to assess the deviation of the mean of the distribution of values from 0.

SNF clustering

For boundaries (RobusTAD and Insulation Score) and compartments (eigenvector), feature scores were first filtered to include only

positions where <5% of samples resulted in undefined calls and positions that were among the top 40% of variance across samples.

Inter-sample distances were then calculated using the squared Euclidean distance as recommended by the SNF manual for contin-

uous values.

For domain calls (Arrowhead and TADpole) and loop calls (HiCCUPS, Mustache, and Chromosight), the numerical values of the

feature scores were found to be noisier than the binary presence or absence of the feature call, therefore the Jaccard distance be-

tween called features was used. For contact matrices overall, HiCRep80 was used to calculate the Stratum-adjusted Correlation Co-

efficient (SCC), and distance between samples was taken as (1 – SCC).

Next, the affinity matrix for each feature was calculated with K = 20 and sigma = 0.3. The overall fusedmatrix between these affinity

matrices was calculated with K = 20 and T = 16. The distance between samples was taken as (0.5 – similarity). Finally, these distances

were plotted using UMAP with n_components = 2. Concordance of individual features with the final fused matrix were generated

using concordanceNetworkNMI with C = 2. Distance between annotated features was taken as (1 – concordance).

Feature enrichment analyses

Overlap between either up- or down-regulated loop anchors and the Ensembl regulatory build annotations v2019032984 using a

Fisher’s exact test, with the background set being the complete set of loop anchors across all ependymoma samples.

Motif enrichment within TULIPs was computed as the motif density 1-kb bins for TULIPs (and flanking regions) normalized to a

background of shuffled intervals matching in GC and simple repeat content. Null regions, equal in number to the observed regions,

were generated using genNullSeqs from gkmSVM v0.81.060 using default parameters and performed separately for TULIPs and

flanking regions. Aggregate plots centered on TULIPs were then produced using the computeMatrix module from deepTools

v3.5.1.61

Repeat element enrichment within TULIPs was compared against conserved compartment B regions defined as 50-kb bins with a

negative score in at least 10 PFA samples. The significance of overlap with RepeatMasker annotations were assessed using Fisher’s

exact tests.
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Theweb-based g:GOSTmodule of g:Profiler with default parameters was used to assess pathway over-representationwithin gene

lists of interest.

3D modeling of genome-wide contacts

1000 whole-nucleus structures per sample were simulated at 1Mb resolution using IGM commit bcea032 (https://github.com/

alberlab/igm,85) with default parameters. The mean pairwise distance between TULIP regions was then computed for each model,

providing 1000 values per sample. Structures were visualized using VMD v1.9.3.56

Transcriptome analysis
Library preparation

RNA-Seq libraries were generated and sequenced at Ontario Institute for Cancer Research (OICR) using Kapa RNA HyperPrep kit.

Three RNA-Seq libraries were pooled per lane of HiSeq 2500 High-output PE126.

Differential expression

RNA-seq reads were aligned to hg38 (GCA_000001405.15_GRCh38_no_alt_plus_hs38d1_analysis_set) using HISAT2 (v2.1.0)62 with

parameters ‘–rna-strandness RF –downstream-transcriptome-assembly’. SAM output was sorted, converted to BAM, and indexed

using samtools (v1.9).63 A counts table was prepared using the count function of HTSeq (v0.13)64 and differential expression testing

was performed using Limma with Voom transformation (v3.44).65

De novo transcript analysis

StringTie (v2.0) was used to annotate transcripts present in each sample66,67 using parameters ‘-m 150’, then ‘stringtie –merge’ was

used to generate a unified annotation GTF. GffCompare (v 0.11.7)68 was run to determine how each of our de novo annotations

compared to the GENCODE reference (v34).86 FASTA sequences for each transcript were extracted using GffRead (v0.11.7).68

RNA-seq reads were pseudoaligned and quantified using kallisto (v 0.45.1).69 Strand-specific RNA-seq coverage tracks were ge-

nerated from the HISAT2 aligned BAMs using deepTools (v3.5.1)61 bamCoverage with parameters ‘–effectiveGenomeSize

2913022398 –normalizeUsing RPGC –binSize 1’ and either ‘–filterRNAstrand forward’ or ‘–filterRNAstrand reverse’. Overlap between

genes, transcripts, superenhancers, and TULIPs was performed using bedtools intersect.

Comparison RNA-seq

This study makes use of data generated by the St. Jude Children’s Research Hospital – Washington University Pediatric Cancer

Genome Project. RNA-seq count matrices spanning ependymoma,87 high-grade glioma88 and medulloblastoma were accessed

from the St. Jude Cloud.89

Bulk RNA-seq deconvolution

Reference single-cell RNA-seq and cell assignments were accessed.90 Additionally, non-tumor cell identities were assigned using

CellAssign (v0.99).70 Bulk RNA-seq data was deconvoluted using CIBERSORTx71 with batch correction and 1000 permutations.

Differentially methylated regions
Differentially methylated regions (DMRs) in PFA were obtained from Mack et al., 2014.2 Genome coordinates were converted from

hg19 to hg38 with UCSC liftOver. Bedgraphs of DMRs and the differential methylation values were converted to BigWig using UCSC

bedGraphToBigWig.

Aggregate plots of DMRs overlapping TULIPs were generated using deepTools. First, computeMatrix was called with parameters

‘scale-regions –regionBodyLength 1000000 –binSize 25000 –upstream 1000000 –downstream 1000000 –averageTypeBins "sum"

–missingDataAsZero’. Then plotHeatmap was used with parameters ‘–colorList "blue, white,yellow" –sortRegions ascend –zMin

�0.50 –zMax 0.50’ for the final plots.

Aggregation of DNA methylation
Raw reads of whole-genome bisulfite sequencing (WGBS) were submitted to Bismark (v0.22.3)72 for mapping and methylation call-

ing, discarding duplicate reads. CpGs that overlapped with SNPs from dbSNPs or were located within the ENCODE blacklisted re-

gions were excluded and only CpGs covered byR 53 were retained for the computation of DNA methylation levels. The aggregate

plots and heatmaps of DNAmethylation were generated using deepTools v3.1.0.61 We used bedGraphToBigWig to generate bigwig

files, then applied computeMatrix (scale-regions –regionBodyLength 5000000 –beforeRegionStartLength 5000000 –afterRegion-

StartLength 5000000 –binSize 50000 –skipZeros) to obtain enrichment matrices around TULIPs. After that, enrichment matrices

were visualized in heatmaps using custom scripts, and aggregate plots were produced by averaging the score in bins across

rows from the enrichment matrices.

Super-enhancers (SEs)
H3K27ac ChIP data from PFAs was accessed from42 as hg19-aligned BAMs. MACS279 was used to call both broad and narrow

peaks using parameters ‘–gsize hs –bdg –SPMR’. ROSE34,35 was used to call SE regions from broad peaks using parameters ‘-s

6000 -t 2500’. CREAM (v1.1.1)91 was used to call SE regions from narrow peaks using parameters ‘MinLength = 1000, peakNumMin =

2’. We considered the union of ROSE and CREAM calls to be SE regions. Genome coordinates were converted from hg19 to hg38

with UCSC liftOver. Finally, we defined recurrent PFA SEs as those that were detected in 2 or more PFA samples.
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ChIP-seq
Library preparation

ChIP-seq was performed as previously described for primary cultures11 and tumor tissue.42 The H3K9me3 antibody (5 mg, Active

Motif, 39161) was applied to both primary cultures and tumor tissue. Diagenode H3K27me3 antibody (5 mg, C15410069) was applied

to tumor tissue samples, while Cell Signaling Technology H3K27me3 antibody (3 mg, CST 9733) was applied to primary cultures. Li-

braries were generated using Kapa HyperPrep kit (Roche, KR0961) and sequenced on the NovaSeq 6000 PE50.

Peak calling

Reads were aligned using using bwa mem to hg38 coordinates (GCA_000001405.15_GRCh38_no_alt_plus_hs38d1_analysis_set).

Alignments were filtered out if (1) the chromosome name contained ‘‘chrUn’’, ‘‘random’’, or ‘‘_alt’’ (2) the alignment MAPQ was lower

than 30 or (3) the alignment overlapped the ENCODE Unified GRCh38 Exclusion List (https://www.encodeproject.org/files/

ENCFF356LFX/). Peak calling was performed using MACS2 (v 2.1.2) including input control BAMs. Additional parameters to the

MACS2 callpeak function include: ‘‘-f BAMPE -g hs –broad –bdg –SPMR’’. Fold enrichment traces were generated using MACS2

bdgcmp with the parameter ‘‘-m FE’’.

Signal aggregation

For aggregate signal analysis, ChIP coverage was normalized using deepTools (v3.5.1) bamCoverage with parameters: ‘‘–binSize 10

–normalizeUsing CPM –effectiveGenomeSize 2750000000 –extendReads –ignoreForNormalization chrX chrY chrM’’. ChIP signal

was aggregated over the recurrent TULIP BED positions using the deepTools function ‘‘computeMatrix scale-regions’’ with param-

eters: ‘‘–regionBodyLength 1000000 –binSize 25000 –upstream 1000000 –downstream 1000000 –missingDataAsZero –averageTy-

peBins mean’’. Scaled ChIP signal was then plotted using plotHeatmap.

Feature association

To assess the association between TULIPs and H3K9me3, wide spans of H3K9me3 peaks were identified by using ‘‘bedtools merge -d

25000’’ tounitenear-adjacent regions, and thenfiltering for regions larger than250kb.Significance testing for overlapbetween thesewide

spansofH3K9me3andTULIPsusedFisher’sexact test,as implementedbybedtoolsfisher.AssociationbetweenwidespansofH3K9me3

andTULIPswas further testedusingbedtools reldist. Significance testingused theStudent’s t test to compare if theobserved frequencyof

observations at a relative distance of zero (overlapping) was greater than the expected value of 0.02 for unassociated features.

NMF dimension reduction was run with library NMF (v0.21.0) in R 3.6.3. RobusTAD was run with library optparse (v1.6.6) in R 3.6.3.

Visualization of Hi-C contacts and annotated features was performed using Juicebox (v1.11.08),81 HiCExplorer (v3.7.2),74 pyGeno-

meTracks (v3.6)75 or IGV (v2.12.3).76

Oxford nanopore long-read sequencing
High molecular weight DNA was extracted using the Nanobind Tissue Big DNA Kit (Circulomics, Baltimore, Maryland, United States,

NB-900-701-01) following the Mammalian Brain Application Note v1 (12–2019). DNA yields were measured by Qubit dsDNA BR

Assay Kit (ThermoFisher Scientific, cat# Q32853) and molecule length was assessed by Femto Pulse (Genomic DNA 165 kb Kit,

3 h run, Agilent Technologies, Inc., Santa Clara, California, United States, cat# FP-1002-0275). Size selection was done using the

Short Read Eliminator Kit (Circulomics, Baltimore, Maryland, United States, SS-100-101-01) as needed and DNA quality was reas-

sessed as above. Libraries were prepared using the Ligation Sequencing Kit as per protocol (Oxford Nanopore Technologies Ltd,

Oxford Science Park, Oxford, United Kingdom, SQK-LSK110) and sequenced on one (samples E519 and E820) or two (samples

E833 and EPT838) PromethION flow cells (Oxford Nanopore Technologies Ltd, Oxford Science Park, Oxford, United Kingdom,

FLO-PRO002). Base calling was done with Guppy version 4.0.11 and sample were aligned to GRCh38 using minimap2 with the

following parameters -ax map-ont.77 Quality control metric where generated using PycoQC (https://github.com/tleonardi/

pycoQC). The N50 for aligned reads was between 9.3 and 46.1kb and the median aligned read length ranged from 2990 bp-

9690 bp. Total genome coverage ranged from 22.3X-44.4X per sample. Structural variants were called using SVIM version 1.2.0

and required a minimum MAPQ score of 7.78 Bedtools intersect was used to find structural variants overlapping TULIP regions.

OncoPrint
OncoPrint display formutations in genes involved in 3D genome conformation in pediatric CNS tumors was generated using Pediatric

Brain Tumor Atlas (PBTA) provisional data (852 patients, 1037 samples) accessed through PedcBioportal (https://pedcbioportal.

kidsfirstdrc.org).

Immunohistochemistry of primary tumors
FFPE slides of primary tumors (2 PFA, 2 PFB, 1medulloblastoma) were obtained from the Charbonneau Cancer Institute Brain Tumor

Tissue Bank (University of Calgary). Slides were deparaffinized and dehydrated, then treated with antigen retrieval in EDTA buffer pH

8 with 0.05% Tween in a pressure cooker. Slides were blocked in PBS +0.5% BSA with 0.1% Triton X-100 and primary antibody

(Rabbit anti-H3K9me3; Abcam ab8898) was applied overnight at 4 C. Washes were performed in PBS +0.1% Triton X-100. Second-

ary antibody staining was performed for 1 h at room temperature (Invitrogen Goat anti-rabbit Alexa 647; A-21245). Slides were

washed and counterstained with DAPI at 1 mg/mL (Thermo Fisher 62248) and mounted with #1.5 glass coverslips (Globe Scientific)

using FluorSavemountant (EMDMillipore). Imageswere acquired in the CharbonneauMicroscopy Facility (University of Calgary) on a

Zeiss LSM 880 with Airyscan detector. Final images were generated using ImageJ.
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Immunocytochemistry
Cells were plated on 12 mm German glass coverslips (89167-106, VWR) coated with poly-L-ornithine (P4957, Sigma-Aldrich) and

laminin (L2020, Sigma-Aldrich), for 24 h. Cells were fixed in 4%PFA in PBS for 10 min at room temperature. Coverslips were blocked

in 5% BSA in PBS with 0.1% Tween for 1 h at room temperature. Staining was performed overnight at 4�C.
Primary antibodies used

Rabbit Anti-Histone H3 (tri methyl K9) antibody - ChIP Grade (dilution 1:1000; ab8898, Abcam), goat Anti-HP1a antibody - ChIP

Grade (dilution 1:1000; ab77256, Abcam), Mouse HP1g Monoclonal Antibody (2MOD-1G6, Thermo Fisher) at 1:250 dilution.

Secondary antibody staining was performed for 1 h at room temperature using fluorescently conjugated secondary

antibodies

Donkey anti-Rabbit IgG (H + L), Alexa Fluor 647, (dilution 1:500; A31573, Thermo Fisher), Donkey anti-goat IgG (H + L), Alexa Fluor

647, (dilution 1:500; A21447, Thermo Fisher),Goat anti-Mouse IgG (H + L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 488

(dilution 1:500; A-11001, Thermo Fisher). Samples were incubated for 5 min in DAPI (dilution 1:1000; 62248, Thermo Fisher). Washes

were performed using PBSwith 0.1% Tween andmounted with Prolong Diamond antifade (P36965, Life Technologies). Images were

acquired using the ZEISS LSM 880 Airyscan confocal microscope.

Western blot
Protein concentration of samples was determined using the DC (detergent compatible) protein assay (5000112, Bio-Rad). Samples

were prepared in a total volume of 20 mL at 10 mg/mL in Laemmli loading buffer. Samples were run on 10% Mini-PROTEAN gels

(4568044, Bio-Rad) or 12% Mini-PROTEAN gels (4568045, Bio-Rad).

Primary antibodies used: Rabbit anti-EZHIP polyclonal antibody (ABC1378, Millipore), Rabbit Anti-Histone H3 (tri methyl K9) anti-

body - ChIP Grade (ab8898, Abcam), H3K27me3 monoclonal antibody (C15410069, Diagenode), at 1:1000 and Histone H3 K27Ac

Antibody (39134, Active Motif) at 1:500 dilution.

Secondary antibodies used: Goat anti-rabbit IgG H&L (hrp) (ab6721, Abcam) at 1:20000.

Proliferation EdU assay
2*104cCells were plated on chambered 18 Well m-Slide Glass Bottom (81817, ibidi) coated with poly-L-ornithine (P4957, Sigma-

Aldrich) and laminin (L2020, Sigma-Aldrich), for 24 h. ClickIT Plus EdU Cell Proliferation, Alexa Fluor 647 Imaging Kit (C10640,

Thermo) was used according to manufacturer’s instructions. Briefly, cells were cultured with EdU for 4 h to allow incorporation of

fluorescently labeled EdU into newly synthesized DNA therefore marking the proliferating cells. Cells were then fixed, permeabilized

and labeled with ClickIT-647. Then incubated for 5min in DAPI (dilution 1:1000; 62248, Thermo Fisher), washed in PBS, andmounted

with ibidi mounting medium (50001, ibidi). Images were acquired on the ZEISS LSM 880 Airyscan confocal microscopy.

1,6-Hexanediol treatment
Cells were grown on 12mmGerman glass coverslips (VWR89167-106) coatedwith poly-L-ornithine (P4957, Sigma-Aldrich) and lam-

inin (L2020, Sigma-Aldrich), and treated with 0%, 3%, and 10% (w/v) 1,6-hexanediol (240117-50G, Sigma-Aldrich) for 5 min. Cells

were fixed in 4% PFA in PBS for 10 min at room temperature. Coverslips were blocked in 5%BSA in PBS with 0.1% Tween for 1 h at

room temperature. Staining was performed overnight at 4�C with the Rabbit Anti-Histone H3 (tri methyl K9) antibody - ChIP Grade

(ab8898, Abcam), at a dilution of 1:1000, followed by labeling with Donkey anti-Rabbit IgG (H + L), Alexa Fluor 647, (dilution 1:500;

A31573, Invitrogen) for 1 h in the dark and then incubated for 5 min in DAPI (dilution 1:1000; 62248, Thermo Fisher). Washes were

performed using PBS with 0.1% Tween. and mounted with Prolong Diamond antifade (P36965, Life Technologies). Images were ac-

quired using the ZEISS LSM 880 Airyscan confocal microscope.

Fluorescence in situ hybridization
Probe design

Custom oligo-FISH probes were designed against three compartment B regions (chr8:34200000–35500000, chr8:394500000–

39800000, chr8:43250000-43750000) and two compartment A regions (chr8:3775000–38450000, chr8:41500000-42050000) (my-

Tags, Arbor Biosciences), and tagged with ATTO-647 and Alexa 488 respectively.

Pretreatment of Formalin-fixed Paraffin-embedded (FFPE) tissue

FFPE slides of primary tumors (2 PFA, 2 PFB) were obtained from the Charbonneau Cancer Institute Brain Tumor Tissue Bank (Uni-

versity of Calgary). Sample preparation was based on a previously published protocol.92 In brief, slides were incubated in a hybrid-

ization oven at 56�C for an hour, deparaffinized and dehydrated. Slides were then treated with 0.1 N HCl at room temperature for

20 min. Antigen retrieval was performed with a citrate buffer (pH 6) for 30 min in a pressure cooker. Tissue was then treated with pro-

teinase K (20 mg/mL) for 15 min at 37�C. Slides were then dehydrated and air dried.

Pretreatment of primary PFA cells

After treatment with drug compounds (1 mMUNC0642, 1 mMA366) for 7 days, cells were harvested with Accutase (Stem Cell Tech-

nologies) and resuspended in PBS. Slides were spun down onto charged slides using a Shandon CytoSpin 4 centrifuge (Thermo) at

low speed, 400 RPM, for 3min and fixed in 4%PFA. Cells on slides were permeabilized with 0.5%Triton X-100 in PBS for 10min, and

rinsed in PBS. Theywere then incubated for 20minwith 20%glycerol in PBS, followed by 3 rounds of brief snap-freezing and thaws in
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liquid nitrogen, followed by two PBS washes. Slides were then incubated in 0.1 N HCl for 5 min, washed in PBS, and incubated again

for 5 min in 2x SSCT and 50% formamide.

Probe hybridization

Hybridization mixture (50% formamide, 2x SSC, 1% Tween 20, 10% dextran sulfate, 1x Denhardt’s solution) containing 20 pmol of

each probeset was added to slides, sealed with rubber cement, and denatured at 81 C for 10 min, then incubated overnight in the

dark at 37 C. Cytospin samples were washed with 2xSSCT at 60 C3 15 min, followed by 2xSSCT wash for 10 min at room temper-

ature, and 0.2X SSC wash at room temperature for 10 min. FFPE samples were washed for 3 min in 0.4x SSC +0.3% NP-40/Igepal.

Slides were costained with DAPI in 2x SSC (1:1000) for 5 min, and rinsed in 2x SSC. Slides were mounted with #1.5 glass coverslips

(Globe Scientific) using FluorSave (EMD Millipore) and dried.

Image acquisition and analysis

Imaging was performed in the Charbonneau Microscopy Facility (University of Calgary) on a Zeiss LSM 880 with Airyscan detector.

Images were taken as Z-stacks at 600x, with at least two Z-stacks imaged per slide, and further analyzed using ImageJ. Prior to par-

ticle analysis of individual foci, deconvolution was performed using the Diffraction PSF 3D plug-in, followed by the Parallel Spectral

Convolution 3D plugin with a Generalized Tikhonov method, and a regularization parameter of 0.0008. Following this, maximum in-

tensity projections were generated, images were thresholded and particles were identified using the Analyze Particles tool in ImageJ.

These 2D analyses were then analyzed and visualized using custom R scripts. For 3D analyses, images were identified using the 3D

object counter plugin and subsequent analysis was performed using custom R scripts.

Chemical inhibitors
Primary cells were plated on 96-well tissue-culture coated plates coated with poly-L-ornithine and laminin, at 2000 cells per well.

Cells were treated with a gradient of doses of chaetocin (Cayman Chemical) and Alamar blue reagent (Thermo Fisher) was added

after 24 h to assess cell viability. Plates were read on a spectrophotometer by measuring fluorescence at 590 nm.

Generation of EZHIP overexpression cultures
The pPB[Exp]-Puro-EF1A > hEZHIP [NM_203407.3] construct (VB220623-1246rfk, VectorBuilder) and pPB[Exp]-Puro-EF1A>Tur-

boRFP (VB900129-0773jdw, VectorBuilder) were used to create a stable line using Piggybac transposase (PB210PA-1, System Bio-

sciences). A total of 500,000 human neural progenitor cells were transfected using the mouse neural stem cell nucleofection kit

(Lonza, VPG-1004) with 0.66 mg of the construct and 0.33 mg of transposase using the Lonza Amaxa Nucleofector I (protocol

A-33), followed by selection with using 1.5 mg/mL puromycin after 48 h.

Transfection for wild type and mutant EZHIP overexpression experiments
The EF1a-EZHIP (WT)-turboRFP-Luc and EF1a-EZHIP (R405E)-turboRFP-Luc vectors were used. A total of 106 human neural pro-

genitor cells were transfected using the mouse neural stem cell nucleofection kit (Lonza, VPG-1004) with 6 mg of the construct using

the Lonza Amaxa Nucleofector I with protocol O-17, followed by selection with using 1.5 mg/mL puromycin after 24 h.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data visualization was performed primarily in R (v4.0.3). Libraries used include broom (v0.7.5), hexbin (v1.28.2), ggpubr (v0.4.0), ggre-

pel (v0.9.1), RColorBrewer (v1.1.2), tidyverse (v1.3.0), and RIdeogram (v0.2.2).73 Statistical details of experiments and analyses can

be found in the text of the Results section and in the figure legends. Exact p values are provided for each analysis, unless they were

exceedingly small (in which case p values were represented as a ‘‘lower-than’’ range).
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Figure S1. Segregation of tumor subgroups by 3D genome features, related to Figure 1

(A) Examples of downstream Hi-C feature annotations for a representative PFA (E2074, left) and PFB (E1859, right). Contact matrices show show a viewpoint at

10-kb resolution.

(B) UMAP projection of SNF affinity between samples including all analyzed feature annotations.

(C) Concordance between annotated 3D genome features and the SNF model. Concordance values closer to one suggest higher similarity. Distance between

features was defined as one minus concordance. Rows were clustered based on the Euclidean distance between rows.
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(legend on next page)
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Figure S2. Differential loop strength and differential transcription in PFA tumors, related to Figure 2

(A) Global loop strength comparison between PFA and non-PFA EPN for the union set of Mustache-called loops, quantified by Chromosight, grouped by loop

length. P values calculated using Wilcoxon rank-sum test.

(B) Euler plot displaying overlap between genes associated with differential transcription and differential loop interactions.

(C) Count of intergenic transcripts detected by StringTie RNA assembly with expression >1 TPM.

(D) RNA-seq coverage of loci containing PFA-enriched intergenic transcripts as well as overlapping gene annotations and super-enhancer calls.
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Figure S3. Distant B-B compartment interactions are strengthened in PFA, related to Figure 3

(A) Mean Obs/Exp values between genomic bins with the lowest 5 percent of compartment eigenvalues. Contacts separated by <10 Mb are excluded. P values

calculated by Wilcoxon rank-sum test.

(B–I) Workflow for generating automated TULIP calls including: (B) Processed Hi-C contact matrix; (C) Observed/Expected ratio matrix; (D) Observed/Expected

ratio values; (E) Threshold value detection; (F) Separation of pixels by compartment interaction type; (G) Conversion to PGM image; (H) Image smoothing with

ImageMagick; (I) Collapse to 1D BED track.
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Figure S4. TULIPs are strongly associated with PFAs and are not structural rearrangements in the genome, related to Figure 4

(A) Representative 3D models of whole-nucleus, diploid chromosome conformation in PFA and non-PFA EPN. Bins along the same chromosome appear the

same color. Recurrent TULIP loci appear opaque while non-TULIP loci appear translucent.

(B) Mean pairwise distance between intra-chromosomal TULIPs. Two-sided Wilcoxon rank-sum test p < 2E-16 for all comparisons.

(C) Mean pairwise distance between inter-chromosomal TULIPs. Two-sided Wilcoxon rank-sum test p < 2E-16 for all comparisons.

(D) Diagram summarizing the strategy for the design of oligo-FISH probes targeting 3 TULIPs and their intervening type A compartments along chromosome 8.

(E) Strength of inter-TULIP interactions observed using CNV-aware correction vs. without (ICE normalization).
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Figure S5. Influence of TULIPs upon 3D genome topology, related to Figure 5

(A) Comparison of interactions for loops with both anchors located outside of TULIPs in PFAs and non-PFA ependymoma (EPN). Distributions were compared

using two-sided t tests. Horizontal lines indicate 25th, 50th, and 75th percentiles.

(B) Comparison of interactions for loops with one anchor located outside of TULIPs and one anchor located inside TULIPs in PFAs and non-PFA ependymoma

(EPN). Distributions were compared using two-sided t tests. Horizontal lines indicate 25th, 50th, and 75th percentiles.

(C) CALDER comparison of genome compartmentalization between a PFB (E1859) and a PFA (E2074).

(D) CALDER comparison of genome compartmentalization between two PFA samples (E2074, E519).

(E) Summary of pairwise comparisons between individual PFA samples and subgroup-specific consensus compartmentalization. Two-sided t test with H0:

mean = 0 and H1: mean s 0.
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Figure S6. Epigenetic features of TULIPs, related to Figure 6

(A) Pileup analysis for H3K9me3 at TULIP regions in PFA samples.

(B) Pileup plots of H3K27me3 signal over recurrent TULIP loci for all PFA samples profiled.

(C) Immunofluorescence for HP1g and H3K9me3 in a PFA surgical resection. Scale bar: 10 mm

(D) Pileup analysis for density of protein-coding genes at TULIP regions.

(E) Pileup analysis of H3K27ac signals across TULIPs and their surrounding regions in PFA samples.

(F) Repetitive element enrichment within TULIPs.

(G) Oligo-FISH experiment to detect TULIPs (red) or control (Ctrl) regions on chromosome 8 in PFA cells treated with DMSO or UNC0642.
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Figure S7. EZHIP mediates chromatin reorganization, related to Figure 7

(A) Western blot for H3K27me3 and total H3 with protein lysates prepared from hNPCs.

(B) Western blot for H3K27ac and total H3 with protein lysates prepared from hNPCs.

(C and D) Immunocytochemistry for H3K9me3 in hNPCs stably nucleofected with a vector for EZHIP overexpression (EZHIP OE) or with a control vector. The

hNPC models are hNPC1 (C) and hNPC6 (D). Scale bar: 5 mm

(E) Immunocytochemistry for H3K9me3 in hNPCs expressing either wild-type EZHIP (EZHIPWT) or a mutant form (EZHIP R405E). ImageJ was used to determine

the local maxima, as shown the in bottom row.

(F) Immunocytochemistry for H3K9me3 and HP1g in control and EZHIP OE hNPCs. Scale bar: 5 mm

(G) Effects of 1,6-hexanediol on H3K9me3 foci in EZHIP OE hNPCs. Scale bar: 10 mm

(H) Western blot for H3K9me3 in hNPC models. Total H3 was used as a loading control.

ll
OPEN ACCESS Article


	CELL13496_proof.pdf
	TULIPs decorate the three-dimensional genome of PFA ependymoma
	Introduction
	Results
	A 3D genome topology atlas of childhood CNS malignancies
	3D genome topologies distinguish tumor molecular subtypes
	PFAs globally exhibit weaker loops than other CNS tumor types and pervasive transcription
	Large contiguous compartments and strong type B interactions are characteristic of PFA tumors
	A subset of type B compartments form unusually strong long-range interactions in PFA tumors
	TULIPs represent highly recurrent 3D topological features in PFA tumors
	The local chromatin architecture around TULIPs is distorted in PFA tumors
	TULIP interactions depend on high levels of the repressive chromatin mark H3K9me3
	EZHIP promotes TULIP formation

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and study participant details
	Human samples
	Primary cell cultures

	Method details
	Hi-C library preparation
	Hi-C data analysis
	Contact maps
	Contact domains
	Loops
	Compartments
	TULIP interactions
	Comparison Hi-C datasets
	Biases in chromatin compartmentalization changes
	SNF clustering
	Feature enrichment analyses
	3D modeling of genome-wide contacts

	Transcriptome analysis
	Library preparation
	Differential expression
	De novo transcript analysis
	Comparison RNA-seq
	Bulk RNA-seq deconvolution

	Differentially methylated regions
	Aggregation of DNA methylation
	Super-enhancers (SEs)
	ChIP-seq
	Library preparation
	Peak calling
	Signal aggregation
	Feature association

	Oxford nanopore long-read sequencing
	OncoPrint
	Immunohistochemistry of primary tumors
	Immunocytochemistry
	Primary antibodies used
	Secondary antibody staining was performed for 1 h at room temperature using fluorescently conjugated secondary antibodies

	Western blot
	Proliferation EdU assay
	1,6-Hexanediol treatment
	Fluorescence in situ hybridization
	Probe design
	Pretreatment of Formalin-fixed Paraffin-embedded (FFPE) tissue
	Pretreatment of primary PFA cells
	Probe hybridization
	Image acquisition and analysis

	Chemical inhibitors
	Generation of EZHIP overexpression cultures
	Transfection for wild type and mutant EZHIP overexpression experiments

	Quantification and Statistical analysis




